
Applied Research Laboratory

Technical Report

19951211 048

PENNSTATE
IK^M

DTIC ^ÜÄ141X1 ^tuttA,Ulli0A

REPORT DOCUMENTATION PAGE
rtjaoctlwy bur#»n for th« co-tow at mtotmtoon » momtmä m »■"■g*i J Hour QB»
1M MM RMBMVMn^ tMvHi ROTVM« MM CONMBVUM <nM fW*cw*AS tfn coMtctton of I

OMi Ma 07M-0?«

aMMrtM ant mpwttirnno, _
LoHicuuii o< wlunimWH. induing inwwiinw «er mluong tonpumn. to Wwhmgto« _

1. A6KNCY U$f ONCV fU*M blank)

 IWflBWiBO Ü

*iimiLuuiii»Bt^,)BTo»ana.w»iR||mi.D7SM.
2. REPORT DATE

Oct. 1995
3. «FOOT TYrt AND DATES COVERED
Technical Report, Dec. 93 - Oct. 95

4. TITU AND SUBTITLE

Modifying Two-Sided Orthogonal Decompositions: Algorithms,
Implementation, and Applications

5. FLNNMNG NUMBERS

«. AUTHORS)

Peter A. Yoon

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
Applied Research Laboratory
The Pennsylvania State University
P.O. Box 30
State College, PA 16804

9. SPONSORING/MONITORING AGENCY NAME(S)
Dr. Kam Ng, Code 334
Office of Naval Research
Ballston Tower 1
800 N. Quincy St.
Arlington, VA 22217-5660

I. PERFORMING ORGANIZATION
REPORT NUMIER

TR-95-002

10. SPONSORMG / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Also submitted as the Ph.D Thesis of Peter A. Yoon to the Computer Science and
Engineering Department, The Pennsylvania State University, December 1995.

12«. DISTRIBUTION /AVAILABILITY STATEMENT

Distribution unlimited
Approved for grabO« ntoam

12b. DISTRIBUTION CODE

13. ABSTRACT (Minimum 200 words)
In this thesis we propose several algorithms for rank-one updates and downdates

to these decompositions with strong stability properties and efficient implementa-
tions on high-performance computers. We seek algorithms which only require C(n2)
operations per update or downdate unlike recomputing the two-sided orthogonal
decomposition (TSOD) in 0(n3). We also desire highly regular data movement inher-
ited in these algorithms in order to implement these efficiently on the distributed
memory MIMD multiprocessors. The algorithms are based upon "chasing" strategies
for updating and downdating procedures for orthogonal decompositions.

14. SUBJECT TERMS
two-sided orthogonal decomposition, singular value
decomposition, signal subspace methods, updating algorithms

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

IS. SECURITY GLASSnCATiON
Of ABSTRACT
UNCLASSIFIED

IS. NUMBER OF PAGES

182
1C PRICE CODE

20. UNNTATtON OF ABSTRACT

UNLIMITED

NSN 754<W>1-280-5500 Standard Form 298 (Rtv. 2-89)
PmcnMd by AN« Md OH«
m-102

The Pennsylvania State University
APPLIED RESEARCH LABORATORY

P.O. Box 30
State College, PA 16804

MODIFYING TWO-SIDED ORTHOGONAL
DECOMPOSITIONS: ALGORITHMS, IMPLEMENTATION,

AND APPLICATIONS

by
Peter A. Yoon

Technical Report No. TR 95-002
November 1995

Supported by: L.R. Hettche, Director
Office of Naval Research Applied Research Laboratory

Approved for public release; distribution unlimited

■\

>

111

Abstract

Two-sided orthogonal decompositions (TSOD) have been essential tools for es-

timating the numerical rank of a matrix and computing various important subspaces

including the range (signal) and null (noise, error) spaces. They include partial and

complete singular value decompositions (SVD), the URV decomposition (URVD), and

the ULV decomposition (ULVD).

Given the TSOD of an m-by-n (m > n) matrix A, it is often desirable to suc-

cessively add a new row to A and to compute the TSOD of the modified matrix. This

is called the updating problem. The opposite computation, the downdating problem,

deletes the existing row from A, and computes the TSOD of the modified matrix. These

problems of updating and downdating can be transformed into those of modifying a

symmetric positive definite matrix by a rank-one matrix.

In this thesis we propose several algorithms for rank-one updates and downdates

to these decompositions with strong stability properties and efficient implementations

2
on high-performance computers. We seek algorithms which only require ö(n) opera-

3
tions per update or downdate unlike recomputing the TSOD in 0(n). We also desire

highly regular data movement inherited in these algorithms in order to implement these

efficiently on the distributed-memory MIMD multiprocessors. The algorithms are based

upon "chasing" strategies for updating and downdating procedures for orthogonal de-

compositions.

In modifying the SVD and partial SVD, our algorithms separate singular values

into "large" and "small" sets and then obtain an updated bidiagonal form with corre-

sponding "large" and "small" columns. This makes more accurate update or downdate.

IV

The algorithm can be implemented almost identically for both updating and downdat-

ing by reducing the problems to a 2 x 2 updating/downdating problem. Moreover, the

bidiagonal reduction phase is highly parallelizable. A perturbation theory for modifying

the SVD is also presented; it shows that the computed subspaces associated with large

and small singular values are as accurate as can be expected.

An alternative to performing the singular value decomposition is to factor a matrix

(C \ T
into A = U I IV where U and V are orthogonal matrices and C is a lower triangular

matrix indicating a separation between two subspaces by column size. These subspaces

are denoted by V = (V V), where the columns of C are partitioned conformally into

C = [C C) with HCUIp ^ e • Here e is some tolerance. In recent years, this has been

called the ULVD. A downdating algorithm is proposed which preserves the structure

in the downdated matrix C to the extent possible. Strong stability results have been

proven for these algorithms based on a new perturbation theory. When C is given as an

upper triangular matrix, we have the URVD. We describe algorithms for modifying the

URVD, and make comparison with our algorithms for modifying the ULVD in terms of

the computed subspaces.

When downdating the ULVD, a deflation step is necessary to compute its nu-

merical rank. We propose an improved algorithm which almost always guarantees the

rank-revealing structure of the decomposition after a downdate without the deflation

process. This requires some condition estimation. Moreover, one can monitor the con-

dition of the downdating problem by tracking exact quantities of Frobenius norms of all

three blocks of the lower triangular factor in the decomposition. The algorithm is also

used to update the ULVD with a slight modification.

A fully parallel algorithm for modifying the SVD is also presented. We consider

both cyclic and consecutive storage schemes. We will show that the latter scheme out-

performs the former on a coarse-grain distributed-memory MIMD multiprocessor mainly

due to high communication cost required by the former. We present the experimental

results on the 32-node Connection Machine (CM-5). A speed-up of 20 and the efficiency

of CPU utilization 60% are achieved for matrices of moderate size.

Our algorithms for modifying the TSOD offer a promising approach to a number

of problems like the recursive total least squares, linear regression, the subspace-based

methods for signal processing, image processing, and pattern recognition. These prob-

lems require a real-time solution in estimating the numerical rank of the data matrices,

and orthonormal basis for the subspaces associated with large and small singular values.

Our algorithms are capable of providing those answers since continual updating and

downdating are required by the underlying physical model.

Aooession For
HT1S &RA&I IP
DTIC im Q
Unennoussoed Q
Justification.

Availability Oüdaa
|ü.\f&U and/or"

Spoalfel
I I-

VI

Table of Contents

List of Tables x

List of Figures xi

Acknowledgments xiii

Chapter 1. Introduction 1

1.1 Statement of Problem 1

1.1.1 Two-Sided Orthogonal Decompositions (TSOD) 1

1.1.2 Modifying the TSOD 4

1.2 Problem Formulation 4

1.3 Importance of the Problem 6

1.4 Issues and Concerns 7

1.5 Basic Approach to the Problem 7

1.6 Main Results 8

1.7 Review of Related Work 8

1.8 Overview of the Dissertation 10

Chapter 2. Background 12

2.1 Notation and Basic Notions 12

2.2 Stability of Algorithms 15

2.3 Model of Computation 16

2.4 Orthogonal Factorizations 17

2.4.1 Householder Transformation 17

2.4.2 Givens Transformation 18

Vll

2.4.3 Rank Revealing QR Factorization 19

2.4.4 Complete Orthogonal Decompositions 20

2.5 Computing the TSOD 21

2.5.1 Computing the Singular Value Decomposition 21

2.5.2 Computing the ULV and URV Decompositions 23

2.6 Subspaces from the URV and ULV Decompositions 24

2.7 Total Least Squares Problem 27

2.7.1 Problem Formulation 27

2.7.2 Basic Solution 28

2.7.3 Recursive Total Least Squares 29

Chapter 3. Basic Algorithms 31

3.1 Givens Rotations 31

3.2 Chasing Algorithms 33

3.2.1 A Chasing Routine for a Bidiagonal Matrix 33

3.2.2 A Chasing Routine for a Lower Triangular Matrix 36

3.3 qd Procedure 37

3.4 The LINPACK Downdating Procedure 39

3.5 2x2 Updating/Downdating Procedure 40

Chapter 4. Modifying the ULV Decomposition 42

4.1 Introduction 42

4.2 A Procedure for Downdating ULV Decomposition 44

4.2.1 Description of the Algorithm 44

4.2.2 Relation to Park and Elden's URV Procedure 55

4.3 Error Analysis 59

4.3.1 Error Bounds on Algorithm 4.1 59

Vlll

4.3.2 Effect of Rounding Errors on Singular Vectors 61

4.4 Numerical Examples 71

Chapter 5. Rank Detection for Modifying the ULV Decomposition 81

5.1 Introduction 81

5.2 New Algorithm for ULVD Downdating 82

5.3 Rank Detection 88

5.3.1 Bounding ||X_1|| 88

5.3.2 Tracking ||i-1||F 95

5.3.3 Tracking ||f|| and ||G||f 99

5.4 Numerical Examples 100

Chapter 6. Modifying the Singular Value Decomposition 107

6.1 Introduction 107

6.2 Secular Equation Approach 109

6.3 Ordinary Chasing Algorithms 112

6.3.1 Basic Chasing Routines 112

6.3.2 The Updating Algorithm 114

6.3.3 The Downdating Algorithm 117

6.3.4 Extensions to Partially Reduced Bidiagonal Forms 124

6.4 Error Analysis 126

6.4.1 Error Bounds for Blockwise Algorithms 126

6.4.2 Perturbation Bounds for Invariant Subspaces 127

6.5 Numerical Examples 134

Chapter 7. Parallel Implementation 140

7.1 Introduction 140

IX

7.2 Overview of Connection Machine 141

7.3 Implementation Details 144

7.3.1 Basic Procedures 145

7.3.2 Cyclic Storage Scheme 146

7.3.2.1 Chasing Patterns 148

7.3.2.2 Host Program 149

7.3.2.3 Node Program 150

7.3.3 Consecutive Storage Scheme 152

7.3.4 Computation Cost 156

7.3.5 Communication Cost 157

7.3.5.1 Cyclic Storage Scheme 157

7.3.5.2 Consecutive Storage Scheme . 158

7.4 Timing Results . 159

Chapter 8. Conclusion 162

References 165

Node Program for Bidiagonal Reduction with Cyclic Storage Scheme 180

List of Tables

4.1 Tracking ||f|| and ||C?|| for the ULVD Procedure 76

5.1 Tracking ||f|| and ||G|| for the Improved ULVD Procedure 99

7.1 Communication Primitives 145

7.2 Node Programs Using the Cyclic Storage Scheme 151

7.3 CPU Time (in sec) for the Bidiagonal Reduction 161

7.4 CPU Time (in sec) with Various k (n = 1024, p = 32) 161

XI

List of Figures

3.1 Forward Chasing Procedure for the Bidiagonal Reduction 34

3.2 Chasing Steps for a Lower Triangular Matrix 37

3.3 One Step of qd Procedure 38

4.1 Reduction Steps for Downdating the ULVD 49

4.2 Reduction Steps When G Becomes Singular 50

4.3 Example 4.1 78

4.4 Example 4.2 79

4.5 Example 4.3 80

5.1 Improved Reduction Steps 1-3 for Downdating the ULVD 86

5.2 Improved Reduction Steps 4-6 for Downdating the ULVD 87

5.3 Example 5.1 104

5.4 Example 5.2 '. 105

5.5 Example 5.3 106

6.1 Ordinary Chasing Procedure 113

6.2 Bidiagonal Reduction Steps for Modifying the SVD 118

6.3 2x2 Updating/Downdating Steps and a qd Step 119

6.4 Reduction Steps for the Partially Reduced Bidiagonal Form 125

6.5 Example 6.4 137

6.6 Example 6.5 138

6.7 Example 6.6 139

7.1 Dependency Graph of the Modified Bidiagonal Reduction 142

Xll

7.2 Chasing Patterns 148

7.3 Node Program for the Consecutive Storage Scheme 154

XH1

Acknowledgments

It is impossible for me to cover all who have shaped me. First of all, I am

grateful to Dr. Jesse Barlow, my adviser and friend, whose skillful hands of guidance

and constant encouragement have made this dissertation possible. I am also grateful

to my committee members, Drs. Leon Sibul, Mary Jane Irwin, and Hongyuan Zha, for

reading the manuscript and providing their insight and helpful suggestions. In addition,

I would like to express special gratitude to Dr. Sibul for his patient guidance and a

delightful working environment at the Applied Research Laboratory, and to the Office

of Naval Research for their generous financial support.

I would like to thank the Thinking Machine Corporation for time on CM-2, and

the Northeast Parallel Architectures Center (NPAC) for time on CM-5.

I am also indebted to a special group of individuals who prayed for me through-

out this writing: my parents, my pastor Sang-Kee Eun, and members of the College

Fellowship of my church.

Finally, I thank Jesus Christ my Lord and Saviour for walking with me every step

of this long journey, and for Emily who prayed for me and with me, and for Caleb who

played with me and cheered me up with wonderful smiles.

1

Chapter 1

Introduction

1.1 Statement of Problem

1.1.1 Two-Sided Orthogonal Decompositions (TSOD)

The TSOD of an m x n matrix A, where m> n, can be characterized by writing

them in the form

A-U
M

VT (1.1)

\ °)

where U G 1Z and V G TZ are orthogonal, and M G TZ has one of the fol-

lowing forms: diagonal, partially reduced bidiagonal, upper triangular, lower triangular.

If M is a diagonal matrix of the form,

Af = diag(a1,a2,...,ffn) (1.2)

where we presume

^^•••^v IKCT*+i'---'<V)Me> °k^to1

and tol is the user-supplied tolerance, (1.1) is called the singular value decomposition

(SVD).

If M is a partially reduced bidiagonal matrix of the form,

M =

k n—k

0 £„

k

n—k
(1.3)

where

\B-l\\-l>tol, \\B2\\F<e,

and one of i? and B0 is upper bidiagonal, and the other diagonal, (1.1) is called the

partial singular value decomposition (partial SVD) described by Van Huffel [118]. Here,

we presume they are decoupled, namely, (k, k + 1) entry of M is zero.

If M is an upper triangular matrix of the form,

M

k n—k

'R S^

0 T

k

n—k

(1.4)

where

\\(ST TT)|L<e, \\R-l\\:l>tol,

and R and T are upper triangular, (1.1) is called the URV decomposition (URVD).

If M is a lower triangular matrix of the form,

M =

k n-k

11 ^

F G

k

n—k

(1.5)

where

(F G)|L<£, ||I 'll,^^

and L and G are lower triangular, (1.1) is called the ULV decomposition (ULVD).

Here k is the numerical rank of A and e < y/n — k * tol. We use || • || to denote

the Euclidean norm and || • || p to denote the Frobenius norm of a matrix.

The SVD has been one of the most important tools widely used in a number of

fields of science and engineering for decades, mainly because it offers abundant informa-

tion about the matrix in question. The SVD has many benefits. It provides orthonormal

basis for important subspaces associated with the matrix including the range (signal)

and null (error, noise) spaces.

The URVD and ULVD are particular cases of what Lawson and Hanson [70] called

HRK decompositions. Both URVD and ULVD were introduced by Stewart [101, 102], as

an alternative to the accurate but expensive SVD. Stewart also gave methods to update

2
these decompositions in ö(n) operations.

In fact, all of these decompositions provide valuable information about the data

matrices. Most importantly for many applications, they provide the orthonormal basis

for the range and null spaces. For instance, if V is partitioned according to

V = (V V), V G KnXk, V G nn*(n~k) (1.6)
1 £ X £i

then it is not difficult to see that the columns of V give the desired orthonormal basis

for the approximate null space.

1.1.2 Modifying the TSOD

We are interested in computing the TSOD of A when the TSOD of A is known,

where for updating,

1 A^

T
\T)

(1.7)

and for downdating,

A =

I T r
(1.8)

V

Here, we assume appending a new row to A to be the last row of Ä, and deleting the

first row of A when downdating. The downdating problem is considered more sensitive

than the updating problem because small singular values of A tend to diminish after

a downdate, leaving the matrix near singular, and thus can be unstable [99]. On the

other hand, updating increases all its singular values. Clearly, refactoring the whole

3
decomposition without using the TSOD of A is not practical; it requires ö(n) operations

to compute any TSOD.

1.2 Problem Formulation

We transform the updating/downdating problem into the rank-one modification

of the symmetric eigenvalue problem. Since from (1.7) and (1.8),

AT A AT A , T

A A — A A + prr

= VMTMVT + prrT

= V{MTM + pzzT)VT

where p > 0 for updating and p < 0 for downdating, and

z —

(\
X

\y)

k

n—k
(1.9)

Thus, the problem of modifying the TSOD of A is equivalent to the following

T
eigenvalue problem: given a symmetric positive definite matrix A A with known eigen-

system A A = VM MV , compute the eigensystem of M M + pzz , that is, to find

an orthogonal matrix V G TZ such that

MTM + pzzT = VMTMVT. (1.10)

However, we do not form the explicit product A A because of possible loss of

T information in forming A A. Furthermore, the eigendecompositions do not, in general,

preserve the block structure. Instead, we compute orthogonal matrices Ü € 7on ' ^n ,

V eTZnXn such that

U
M

VT =
M

T
for updating, (1.11)

and

Ü (ZT?) VT =

(\
0

{ M) \M)
for downdating, (1.12)

where M is bidiagonal for the (partial) SVD, upper triangular for the URVD, and lower

triangular for the ULVD.

Then A is given by

Ä = JÜJT

1 M"

\ ° /
VT (1.13)

where

V = VV, Ü = Udi<ig(Ü, I A

m-1 1

J = (^rn-l °)' for uPdating>

and

l m-1

J = I 0 -^rjJ_j J, for downdating.

- T - T In theory, M M + P-zz remains positive semi-definite after downdating, but it

is not always true in finite precision floating-point arithmetic.

1.3 Importance of the Problem

Updating and downdating are important in signal processing and statistical appli-

cations as new observations are added, and the old observations are successively deleted.

They can efficiently be applied to problems which arise in a number of applications:

recursive total least squares problems [23, 34], linear regression [112, 123], linear predic-

tion [113], pattern recognition [16], system identification [60, 105], spectral estimation

[17, 28, 68], adaptive beamforming [76, 77, 96], image processing/restoration [5, 7, 82],

adaptive filtering [64], direction finding [2, 73], subspace-based algorithms in signal pro-

cessing such as MUSIC (Multiple Signal Classification) [94, 95] and ESPRIT (Estimation

7

of Signal Parameters via Rotational Invariance Techniques) [91, 92], and ocean acoustic

tomography [110].

1.4 Issues and Concerns

Algorithms for modifying the TSOD must have at least the following features:

Efficiency The algorithm should require as few operations as possible, for example,

2 ö(n). This feature would make it possible to implement the algorithms for appli-

cations that require a real-time processing, where continual updating/downdating

of the decompositions is required.

Stability The algorithm should produce correct answers within the uncertainties of

the given data. Therefore, the computed solution should be as good as our data

warrants.

Parallelism It should be easy to implement the given algorithm on a parallel processor.

It is desirable to develop parallel procedures which achieve the best possible load

balance and minimize the communication cost, showing high efficiency and a good

speed-up even for small sized problems.

1.5 Basic Approach to the Problem

Our approaches to modifying the TSOD use ideas from "chasing" algorithms

[1, 93, 115, 125] and from the downdating algorithm due to Saunders [46, 85]. Chasing

algorithms apply a series of Givens rotations from both sides to annihilate all components

of z, reducing M to a desired form. These algorithms offer highly regular data movement,

so powerful pipelining strategies can be used on parallel computers. A systolic array

8

implementation of a scheme with similar data movement patterns to this one (but not

similar numerical properties) is implemented in [117].

The alternative to chasing algorithms for modifying the SVD is that of finding

the zeroes of a particular spectral function [10, 25, 49, 53, 54, 67, 97]. However, that

approach, as yet, does not allow us to separate the singular values into separate blocks

in the manner discussed in Chapter 6.

1.6 Main Results

The following are the main results of this thesis.

• Blockwise procedures for modifying the TSOD which preserves the separation be-

tween subspaces associated with the "large" and "small" singular values.

• An error analysis of these procedures demonstrating that the subspaces of the

modified matrix are as good as can be expected.

• Efficient parallel implementation for modifying the TSOD that incorporates clever

pipelining strategies using highly regular data movement inherited from the chasing

algorithms.

1.7 Review of Related Work

As mentioned in Section 1.2, problems of modifying the TSOD can be viewed as

modifying the symmetric positive definite matrix followed by a rank-one matrix. Gill,

Golub, Murray, and Saunders [46] considered a problem of modifying the decomposition

of a matrix following a rank-one change, where they showed how to construct recurrences

for the product of Givens rotations in order to modify Cholesky factor. An algorithm

by Saunders was also described for downdating QR factorization, which has become

9

a backbone of a number of downdating algorithms including those proposed in this

dissertation.

Bunch, Nielsen and Sorensen [26] studied a problem of rank-one modification

of the symmetric eigendecomposition that, in turn, gave a rise to their algorithm for

updating the SVD [25]. Their method was based on solving the secular equations.

Dongarra and Sorensen [38] proposed an algorithm that always computes the

eigenvalues of tridiagonal matrices with high relative accuracy. However, when eigen-

values are clustered together, their algorithms had difficulties in computing numerically

orthogonal eigenvectors.

An improved version was proposed by Sorensen and Tang [97], in which they

incorporated simulated extended precision to overcome the difficulties of previous al-

gorithm. However, using the simulated extended precision made the algorithm require

IEEE floating-point arithmetic.

With careful rearrangement of computations in solving secular equations, Gu and

Eisenstat [54] have succeeded in developing a backward stable algorithm which com-

putes numerically orthogonal eigenvectors without using the simulated extended preci-

sion. They also observed that by using the fast multipole method of Carrier, Greengard,

2 and Roklin [29, 30], eigenvectors can be computed in ö{n) operations as compared

to ö(n) for the QR algorithms [47, 48]. They applied this technique further to sym-

metric tridiagonal eigenproblems [56], bidiagonal SVD problem [55], and the problem of

downdating the SVD [57].

To this end several chasing strategies, which originated from Rutishauser [93],

have been proposed for updating the SVD [27], reducing bordered band matrices [1, 52,

115], and their parallel versions [116, 117], and two-way chasing scheme by Zha [125].

Zha's algorithm improved conventional one-way chasing procedures by about a factor of

2.

10

These chasing schemes implemented a number of algorithms for modifying the

SVD and partial SVD [1,14], updating the URVD [101] and ULVD [102], downdating the

URVD [87] and ULVD [13], refinement techniques for the URVD and ULVD [104, 100],

and modifying the ULLV decomposition of two matrices [22, 75]. Parallel versions of

some of these algorithms were also studied in [81, 103, 124].

1.8 Overview of the Dissertation

In the next chapter, we review some fundamental concepts from linear algebra

used throughout this dissertation. After introducing notations and basic notions, we

discuss briefly various types of orthogonal decompositions and their relations to the

TSOD. Since we assume that the initial TSOD is given for all of our algorithms, we

describe methods for computing the TSOD as well as their numerical properties. We

also describe the recursive total least squares (RTLS) problems as a potential application

for our algorithms.

Chapter 3 contains a detailed description of basic algorithms frequently used in

the subsequent chapters. Some of algorithms include those for computing and apply-

ing a Givens rotation, various chasing algorithms, and the LINPACK [37] downdating

algorithm. We also give special treatment for 2-by-2 updating/downdating procedures.

Chapter 4 discusses methods for modifying the ULVD. First, we present a detailed

description of the ULVD downdating algorithm. An error analysis for this algorithm is

also given to verify that the accuracy of the computed subspaces for large and small

singular values is assessed. Finally, we give numerical tests of our algorithm in the

context of the RTLS.

An improved algorithm for downdating the ULVD is proposed in Chapter 5.

When downdating the ULVD of a matrix, a deflation step is necessary to compute its

11

numerical rank. We propose an efficient algorithm that almost always guarantees the

rank-revealing structure of the decomposition after a downdate without the deflation

process. This always requires some condition estimation. Moreover, we show how to

track exact quantities of Frobenius norms of all three blocks of the lower triangular factor

in the decomposition in order to monitor the condition of the downdating problem. The

algorithm can also be used to update the ULVD with a slight modification.

In Chapter 6, methods for modifying the SVD and partial SVD are introduced.

The main feature of these methods is the ability to separate the singular values into large

and small sets and then obtain an updated bidiagonal form with corresponding large and

small columns. A perturbation theory for updating and downdating the singular value

decomposition is also presented.

We present a fully parallel algorithm for modifying the TSOD in Chapter 7. Both

cyclic and consecutive storage schemes are considered in parallel implementation. We

show that the latter scheme outperforms the former on a coarse-grain distributed-memory

MIMD multiprocessor. We give the experimental results on the 32-node Connection

Machine (CM-5).

Finally, we give our conclusion and propose future work in Chapter 8.

12

Chapter 2

Background

In this chapter we present briefly important concepts from linear algebra fre-

quently used throughout the dissertation. For detailed description of each subject, refer

to [50, 58, 89, 98, 106, 121, 122].

2.1 Notation and Basic Notions

We use the following notations throughout this dissertation.

1Z Set of real numbers denoted by lower case Greek or lower case

italic if there is no confusion

TZn Set of real n—vectors denoted by lower case italic

jlrnxn set of real m-by-n matrices denoted by upper case ITALIC or

upper case Greek letters

/ n-by-n identity matrix, that is, I = (e ,...,e), where e, =

k—l n—k

(oTXo,i,<V^o)T

O n-by-n zero matrix
n J

T A Transpose of A

H T A Complex conjugate of A

A'1 Inverse of A G Tln*n, that is, A~l A = AA~l = J^

span^,...,^} {£"=1/VV0,-6W>

range(A) {y G K™ :y = Ax,xe Tln} = spanfe^,.. .,aj

nuU(^) {x £ nm : Ax = 0}

13

rank(A) dim(range(A))

X(A) Set of eigenvalues of A, that is, {A £ H : Ax = Xx, 0 ^ x £ 11 }

(T(A) Set of singular values of A

cr.(A) ■ i-th singular value of A in nondecreasing order, that is, cr.(A) —

a (A) Largest singular value of A
rricLX

a . (A) Smallest singular value of A

K(A) condition number of A, K(A) = a (A)/a . (A) v ' i \ i maxv " miir '

O(-) g(n) = ö(f(n)) if there exist constants c and N, such that, for

all n > N, we have g(n) < cf(n) [3]

flop A floating point operation, that is, the amount of work associated

with an addition, a multiplication, or a square root

ß Machine unit

sign(x) x/|z| if x ^ 0; 1 if z = 0

DEFINITION 2.1 (VECTOR NORMS). Let x £ TZn. Then

l
» 2M

IMIi =]£ l^-l' INI«, = mfxlzil' Wxh = S xi
i=l ' \i=l

DEFINITION 2.2 (MATRIX NORMS). LetAeTZmxn. Then

\\Ax\\ (m n \7
Mil =max-n-r£, 1141,,= yV|a..r

where p = l,2,oo.

14

We use || • || to denote Euclidean norm || • || , and || • ||„ to denote Frobenius norm. It

can be easily shown that a (A) = \\A\\.
ITlcLX

Next, we devise a notion of distance between subspaces.

DEFINITION 2.3 ([50, P.77]). Let W = (W1 WJ and Z = (Z Z) be orthogonal

matrices where W ,Z 6 K and W ,Z £ K *• . If S = range(Wr) and

S2 = range(Z1), then dist^,^) = \\W* Z^ = ^1 - ^JW?ZJ.

Thus, if s'm(0) = dist(5 , S) for some 6, then 6 is the largest angle between the

two subspaces.

DEFINITION 2.4. A matrix A ell is

diagonal ifa.. = 0, i^ j;
ij

tridiagonal if a.. = 0, \i — j\ > 1;

upper bidiagonal if a.. = 0, i > j or j > i + 1;

lower bidiagonal if a.. — 0, i < j or j < i — 1;

upper triangular if a.. = 0, i > j;

lower triangular if a.. = 0, i < j;

upper Hessenberg if a.. = 0, i > j + 1;

lower Hessenberg if a.. = 0, i < j — 1.

DEFINITION 2.5. A matrix A e 1lnxn is

symmetric if AT = A;

positive definite ifxTATx > 0, 0^x € Kn;

positive semi-definite ifxTATx > 0, 0/ x eTZn;

orthogonal
T T

if A1 A = AA1 = I ; J n

permutation if A = (e ,..., e) where (s.,.
1 n

.,s) is
n'

a permutation of (1,..., n).

15

II ■ II and II • ||p are orthogonally invariant norms, that is, for any x £ 7Z , A £

771X71 771 X 771 71X71
1Z , and orthogonal matrices, Q £ It and Z £TZ , we have

||Qz|| = ||z||, IIQAZll = ||A||, ||g^Z|L = ||A||

mxn
In theory, if rank(4) = k for A £ 11 , then we have

al>o2>...>ak>^ ak+l = .-. = an = 0

where a. are singular values of A defined in (1.2). However, in practice, c, is not

exactly equal to zero, but <r, = d(fi), where \i is the machine unit. Therefore, we

define the numerical e — rank to be the largest integer k such that

ak>€

that is,

°k > *k+l

meaning that there exists an obvious gap between the singular values. A number of

signal identification problems assume a significant gap in the singular value spectrum of

the data matrix. Thus, approximate range and null spaces associated with the large and

small singular values can be defined accordingly.

2.2 Stability of Algorithms

Let T(x) be a function of the input data x.

16

DEFINITION 2.6. An algorithm for computing T{x) is backward stable if the computed

solution T(x) is the exact solution of a slightly perturbed problem with data x.

This definition is similar to that of Bunch [24]. Backward stable algorithms are

very satisfactory although all of the algorithms proposed in this thesis for modifying the

TSOD are not backward stable. They are mixed stable as defined in the following sense:

DEFINITION 2.7. An algorithm for computing T{x) is mixed stable if the computed

solution T{x) is close to the solution of a slightly perturbed problem with data x.

Definition 2.7 is used in the context of modifying orthogonal decompositions [21,

83, 99], and downdating least squares solutions [20]. We will also use this definition of

stability when we analyze our algorithms in the subsequent chapters.

2.3 Model of Computation

The machine unit fi is the smallest number which satisfies

|//(aop6)-(aop6)| < \i |aop6| (2.1)

where op is one of the four arithmetic operations, +,—, X,-r,and fl(a op b) is the floating-

point representation of the exact result a op b. We take the usual model of arithmetic,

assuming underflow/overflow does not occur,

//(ooP6) = (oop6)(l + 0, KI<M- (2-2)

Most computers take this model except for those without guard digits such as Cray for

which

//(aoP6) = o(i + f1)op6(i + y, i^i,iy <M

17

With this model we may obtain unsatisfactory results in addition and subtraction.

We also require for our model

fl{yß) = yß{l + 0, M\<^ x>°- (2-3)

2.4 Orthogonal Factorizations

Orthogonal decompositions play an important role in a number of problems in

matrix computations such as least squares and eigenvalue problems. In this section

we review two special orthogonal transformations: Householder reflections and Givens

rotations, and a family of orthogonal decompositions that can be computed by a series

of application of these transformations.

2.4.1 Householder Transformation

A Householder transformation (reflection) of order n takes the form

H = I - 2vvT/vTv (2.4)
n

where v is called a Householder vector. It is easy to verify that H is symmetric and

orthogonal. The Householder transformation can be used to annihilate a number of

components of a vector. For example, let x € TZ . If we choose v such that

v. = 0, i = 1,..., k — 1
i

v. = x., i = k + 1,.. .,71
i i

18

where

2^ s = -s\gn(xk)(i:T!=kxi)

then we obtain
7 ■

Hx = {xvx2,...,xk_rs,0,...,0) .

Note that we always choose s so that s and x, can have opposite sign to prevent the

loss of precision in the computation.

2.4.2 Givens Transformation

When one wishes to zero elements more selectively, Givens transformations (ro-

tations) do the best job. A Givens rotation takes the form

J(i,j,0) =

1 ••• 0 0 ••• 0

where c = cos(ö) and s = sin(ö) for some 6.

n .,
Given a vector x E.TZ , if we choose

—x.
3 Xi "j I 2 , 2 c=—, s = —-, p = \X. +x .,

p p V * 3

19

then we obtain

J(iJ,0)TX = (xV--;Xi_VP,Xi+V---,*k_V0,Xk+V--;Xnf.

Algorithm 3.2 described in the next chapter computes c and s without causing overflow

and underflow in computing p.

2.4.3 Rank Revealing QR Factorization

The QR factorization of an m-by-n matrix A is given by

'^

\°/
A = Q

« = («! Q2), Q^nnxn
% Q2e7emx(m-n)

(2.5)

where Q £ TZ is orthogonal and R 6 It is upper triangular.

If A has full column rank, the columns of Q spans range(^4). However, when A

is near rank-deficient, and computing orthonormal bases for range(A) and null(A) is of

interest, the factorization of the form (2.5) is obviously inadequate.

It can be shown that with a careful rearrangement of columns of A with some

pivoting, one can produce another QR factorization which reveals the numerical rank of

A. A rank-revealing QR (RRQR) factorization of A 6 1Z is any decomposition

k n—k

RU R\2

AIl = Q 0 R

0

22

0

n—k (2.6)

20

Q = (Q, Q2), Q1eKmxn,Q2eKmx{m-n)

where R and R are upper triangular, R is well-conditioned, ||Ä ||~ « cr,(A),

H-ß || « er, ,(^4), and II is a permutation matrix. Here, A; is the numerical rank of A.

Note that ||-R19|| is not necessarily small compared to ||Ä ||. Thus, the factorization

does not produce explicitly the approximate null space of A.

Chan [31], however, shows that RRQR factorization may produce the approximate

null space for A with high accuracy when there is a large gap in the singular value

spectrum of A although that may not be a practical assumption in some applications.

His algorithm incorporates several techniques such as an efficient condition estimation

and column pivoting. His algorithm also guarantees an RRQR factorization for a high-

rank problem.

Using similar ideas, Foster [44] independently developed a stable algorithm for

determining the numerical rank of a matrix without requiring column interchanges. Hong

and Pan [62] recently showed that the permutation Ü always exists, and gave a method

for constructing such permutation. However, because of the high cost required by the

procedure, it has more theoretical than practical value.

2.4.4 Complete Orthogonal Decompositions

It turns out that with an appropriate choice of a general orthogonal matrix Z £

,nxn TZ (considering permutation matrices as a special class of orthogonal matrices), one

can reduce R in (2.6) even further so that ||Ä || becomes small as well:

AZ = Q

k n—k

Rn R\2

o £„
22

0 0

it

n—k ,

z = (z1 z2), z1ennxk, z2enn*(n k)

where ||Ä || « a, (A), and

21

(2.7)

\Ä22/
"Vl^

Then, it is easy to see that columns of Z provides the orthonormal basis for the ap-
Li

proximate null space.

2.5 Computing the TSOD

2.5.1 Computing the Singular Value Decomposition

A standard way of computing the SVD of A G TZ involves two steps: bidiag-

onalization and computation of the SVD of resulting bidiagonal matrix. The first step

771X 771
requires to find products of Householder transformations, U = U •■•U £ 11

and V = V, • • -V , € 1ZnXn such that
1 n—1

T
U1 AV

fB^

\°J

22

where B is upper bidiagonal. Then, we compute orthogonal matrices P,Q E TlnXn such

that

B = PZQT, S = diag(c71,...,a7}).

Thus we obtain

A = X

I \
S

\°/
YT

where X = U diag(P, /) and Y = VQ.

2
The whole process requires ö(m n) flops. The second phase of computing the

SVD of bidiagonal matrix can be done by QR-iteration [47, 48] which is implemented

in the LINPACK [37]. But the singular values computed by this method differ from the

true singular values by at most p(n) ■ ß • a (A), where p(n) is a moderately growing max

function of n. Thus, large singular values are computed with high relative accuracy, but

small ones are not generally accurate.

Demmel and Kahan [35] developed an algorithm for computing all the singular

values of a bidiagonal matrix to maximal relative accuracy independent of their mag-

nitudes. Their algorithm implemented in LAPACK [6], is essentially the QR-iteration

incorporated with a "zero-shift", which is often faster than the standard algorithm im-

plemented in the LINPACK.

Fernando and Parlett [40] simplified the zero-shift bidiagonal algorithm by Dem-

mel and Kahan even further by replacing a zero-shift QR step with two steps of LR

iteration that implement the qd algorithm. We describe the qd algorithm in the next

chapter.

Other methods for computing all the singular values with high relative accuracy of

a bidiagonal matrix include bisection [15], Rayleigh quotient iteration [88]. But they are

23

not competitive in speed with the zero-shift bidiagonal algorithm and the qd algorithm,

although they are probably the most parallelizable algorithms for this problem.

It is a well-known fact that reducing a dense matrix into bidiagonal form can

introduce large relative errors in its singular values. The Jacobi method for computing

the SVD of a dense matrix is much slower but more accurate than any algorithms that

first bidiagonalize the matrix [36]. In this iterative algorithm, a series of Givens rotations

are applied to pairs of rows and columns to reduce off-diagonal entries. With a clever

ordering [74], the algorithm can be implemented in parallel, being competitive in speed

with other methods.

2.5.2 Computing the ULV and URV Decompositions

The ULVD of A € 72. can be obtained by computing its QL factorization

A = Q
I L^

\<V

772 X 772 _ 71X 72
where Q G 71 is orthogonal and L £ 71 lower triangular, followed by computing

the ULVD of L using the deflation technique described in [100, 102]. First, we estimate

an approximate left singular vector u of unit norm of L which corresponds to a (i)

using some condition estimator. A survey of popular condition estimators is given in

[61]. Then, we compute an orthogonal matrix Q £ 71 such that u Q = e and an

— 72 X 71
orthogonal matrix P € 71 , such that

an{L) = \\JL\\ = \\(UIQ)(Q
T

LP)\\ = ||e^(gTXP)||,

24

-T which is the size of the last row of L. Here, P is applied to restore Q L into the lower

triangular form. We repeat this deflation process until all the small rows of L appear in

the decomposition yielding the ULVD of A of the form (1.5).

Similarly, the URVD of A can be obtained by computing its QR factorization of

the form (2.5) followed by computing the URVD of R using the deflation steps. This time

we estimate an approximate right singular vector v of unit norm of R which corresponds

nxn -T
to a (R), and then compute an orthogonal matrix Q 6 Tl such that Q v = e and

an orthogonal matrix P £ TZ , so that

an{R) = \\RvJ = \\(PTRQ)(QTvn)\\ = \\{PT RQ^J

which is the size of the last column of R. Here, P is applied to restore RQ into the

upper triangular form. We repeat this deflation process until all the small columns of R

appear in the decomposition yielding the URVD of A of the form (1.4).

2.6 Subspaces from the URV and ULV Decompositions

In this section we present error bounds for accessing the accuracy of subspaces

computed by the TSOD, particularly, the ULVD and URVD. The discussion that follows

is largely abridged from that of Fierro and Bunch [41, 42].

Let the SVD of A G ftmXn, m > n be

A = U
(~\

\°/
VT, (2.8)

where

k n—k m—n k n—k

"= ("i "2 ",). y= (vi v
2),

and E has the form (1.2), and let the URVD of A be

25

A = U R
V
\ ° /

Vi (2.9)

where

k n-k k n—k

UR = [URl UR2 URs), VL= [VR, VR2\

and C has the form (1.4), and let the ULVD of A be

A = UW

\ ° /
VT (2.10)

where

Jt n-k k n-k

UL= [hi UL2 UL3 h VL= [VL1 VL2

and Cj. has the form (1.5). Here, U, UR, UT, V, V , and V are orthogonal matrices.

Then we have the following bounds on subspaces computed by the URVD and

ULVD, which are associated with the large and small singular values.

26

THEOREM 2.1 ([42]). Let A e KmXn have the SVD of the form (2.8) and the URVD

of the form (2.9). Suppose a . (R) > ||T||. Then

\\S\\ T o- . (R) \\S\\
nJ'l'Ll < IK V' < 2 2 (2.11)

minv ' " "

WTV u< mm (2,2)
2 Rl a . (R) - \\T\\2

minv ' " "

THEOREM 2.2 ([42]). Let A £ nmxn have the SVD of the form (2.8) and the ULVD

of the form (2.10). Suppose a . (L) > \\G\\. Then

IVTV }l < 111 Ml (2,3)
1 L2 o-2. (L) - \\G\\2

mmv / II II

ll^ll < wTy || < !!£M (214)
|X|| + ||G||-||t;2(;Llll-crmin(X)-||G|| (2-14)

From these theorems we immediately realize that the quality of subspaces com-

puted by the URVD and ULVD do not depend on the gap in the singular value spectrum,

which is required by the RRQR decomposition. We also observe that by keeping ||5|| and

||JP|| small, we can obtain highly accurate subspaces. Several ways of achieving this are

described in [41, 42, 104]. It can be also argued that the ULVD computes the numerical

null spaces more accurately than the URVD, whereas the URVD yields a better estimate

of the numerical range.

27

2.7 Total Least Squares Problem

2.7.1 Problem Formulation

The classical linear least squares (LS) problem is given by

or equivalently,

min \\Ax - b\\, A € ft , b G ft™ (2.15)
x£Un

min ||e||, e e ft™ (2.16)
o+e€range(.A)

where A is data matrix whose rows contain measurements from the model under con-

sideration, and b is the observation vector. Here, we presume A is free of error and b

is subject to error. However, it is unrealistic to take error-free measurements from the

model.

The total least squares (TLS) problem assumes that there are errors in the data

matrix A as well as the observation vector 6. The TLS problem has the formulation

HeA+*,ll(£e)llr (2'17)

which is analogous to (2.16).

The errors-in-variables problems have a long history in statistical literature. In

the field of numerical analysis, this problem was first introduced by Golub and Van

Loan [51] and then studied extensively by Van Huffei et al. [114, 118]. If eTQ and

(ErpT c erpT Q) are the LS and TLS corrections to (2.16) and (2.17), respectively, it can

be shown that

^ETLS eTLS^F * UeLsH

28

2.7.2 Basic Solution

The TSOD gives an elegant way of solving the TLS problem. Suppose the TSOD

of (A b) G ftmx(n+1) is given by

(A b) = U
(M)

vT, V =

it n-k+1

V2

\°) V

where U E H m an d V € ft("+1)x("+1) are orthogonal, and M G ^n+1)x("+1) has

one of the forms (1.2)-(1.5). Then V = (v, , ...,v) is a basis of the noise subspace

of (A b), and the minimum norm TLS solution is given by computing a Householder

transformation H £ TV-n ' ^ ' such that

V2H =
Y d

0 S
(2.18)

If «5 / 0, the TLS solution x is given by

x = —d/S. (2.19)

See [118] for details. In particular, Golub and Van Loan formulated the solution based

on the SVD. Van Huffel and Zha [119] also formulated the solution to the TLS problems

based on the URVD and the ULVD without the explicit computation of the approximate

null space basis V .

29

2.7.3 Recursive Total Least Squares

When one does not have complete knowledge of the data in a given model, recur-

sive procedures make it possible to achieve satisfactory results. The algorithm is given,

to begin with, incomplete knowledge about the environment, and modifies the processing

model in an adaptive fashion as data are received sequentially.

In recursive TLS problem, it is required to append a new row to the data matrix

A and an observation to b, and the new information must be incorporated into the TLS

solution. It is also desirable to delete the oldest observation from the existing data.

The updating and downdating problems of the form (1.7)-(1.8) are associated

with the sliding window method [4, 19, 32]. At each step of the sliding window method

with the window size s, an s X n data matrix is constructed from an m X n observation

matrix A by adding a new row to the data matrix in the previous window and deleting

the oldest row from it. In step j, the row s + j of the observation matrix is added and

the row j is deleted, giving the data matrix A.:

'M,=

/ T
aj-s+l
T

aj-s+2

T

T a.
J

■ Vi

/ T
ajs+2
T

aj-s+3

T a.
J

T

30

An alternative approach is to use an exponential forgetting factor ß (0 < ß < 1)

[59]. In this approach the modified matrix in (1.7)-(1.8) is given by

A =
<ßA'

\ •)

(2.20)

Here, the effect of old observation diminishes exponentially as continuous updating is

required. However, the explicit removal of the observation, as in the sliding window

method, makes it simple to estimate the rank of modified matrix, that is, it remains the

same or increases by one for updating, or decreases by one for downdating. Thus, an

indefinite number of condition estimation steps is not necessary for rank detection as

done in [101, 102].

31

Chapter 3

Basic Algorithms

This chapter contains detailed description of basic algorithms frequently used in

the subsequent chapters. Throughout the dissertation we follow the convention of the

MATLAB [78] in describing the algorithms. Some of the algorithms include those for

computing and applying a Givens rotation, various chasing algorithms, and the LIN-

PACK [37] downdating algorithm. We also give a special treatment for 2-by-2 updat-

ing/downdating procedures.

3.1 Givens Rotations

This section contains simple routines for constructing and applying Givens rota-

tions described in Section 2.4.2.

ALGORITHM 3.1. This function computes complex absolute value of x + iy, that is,

= yfc2 • -2 t = yx +y

function t = cabs(x,y)

if |x| > \y\ then

r <— y/x; t <— \x* y 1 + r

else

r <- x/y; t *- \y\ * y 1 + r

endif

end

32

ALGORITHM 3.2. This function computes c = cos(0) and s - sin(0) for some 9 such

that

/ \
c s

—s c

I \

\hJ

(
cabs(a, b)

0

procedure formrot(a, b, c,s)

if \a\ > \b\ then

r <— b/a; factor <— V1 + r

a <— \a\ * factor; c *— 1/factor; s <— r * c

else

r <— a/b; factor <— y 1 + r

a <— |6| * factor; s «- 1/factor; c <— r* s

endif

end

ALGORITHM 3.3. This procedure applies the plane rotation defined by c and s to rotate

(x ,y) .

procedure applyrot(a;, y, c, s, ri)

temp <— c * x(l: n) + s * y(l: n)

y(l: n) < s * x(l:n)+ c* y(l:n)

x(l: n) <— /emp

end

33

3.2 Chasing Algorithms

3.2.1 A Chasing Routine for a Bidiagonal Matrix

The following routine, for a given vector z and a diagonal matrix B, finds orthog-

onal matrices Ü and V such that

B = ÜTBV, VTz = pev p = \\z\\ (3.1)

where B is lower bidiagonal.

Fig. 3.1 illustrates the reduction steps. The right arrows -» denote rotations

from the left on two particular rows, whereas the downarrows Ü denote rotations from

the right on two particular columns. Here z denotes elements in the vector z, b denotes

elements in B, and z or b denotes an element about to be zeroed out. We now formally

present the algorithm below.

ALGORITHM 3.4 (CHASING ALGORITHM FOR BIDIAGONAL REDUCTION). Given a diag-

onal matrix, B = diag(7(l: n)), and a vector to be reduced, z(l: n), the following chasing

scheme produces a lower bidiagonal matrix B such that B — bidiag(7(l:n),^>(l:n- 1))

and satisfies (3.1).

procedure forchase(7, <j>, z, n)

formrot (z(n — 1), z(n), en, sn)

e < sn * j(n — 1); f(n — 1) <— en * 7(71 — 1)

(f>(n — 1) <— sn * 7(n); 7(n) <— en* 7(71)

formrot (7(71), e, en, sn)

applyrot (en, sn, (f>(n — 1),7(71 — 1), 1)

for i <— n — 2,..., 1

formrot (z(i), z(i + 1), en, sn)

34

i 1 I I
(z z z z\ /zzzO\/zz?0\ (z z 0 0\

b b
b

bj
b b

i i
0 0\ (z z 0 0\

b

b
b b T

\ b bj

i I
(z 0 0 0\ fz 0 0 0\

b
b

\

b
b b/

b
b 6
b b

\ b b bj

Iz z
b

b
b b

\ b b bj

i i
(z z

b
b
b b

b bj

0 0\ Iz 0 0 0\
1 b b

b b
b b b

V b bj
i i

b
b b

b b b
b b)

b
b b b

b b
b b]

(z 0 0 0\
6
6 b

b b
\ b b b)

Iz 0 0 0\
6
b b

b b 6
6 b]

(z 0 0 0\
6
b b

b b
b b/ \

Fig. 3.1. Forward Chasing Procedure for the Bidiagonal Reduction

35

e < sn * f(i); f(i) *— en* f(i)

<j)(i) <— sn* 7(1 + 1); f(i + 1) <— en * • y(* + i)

d *- en* (f>(i + 1); <$>(i + 1) <- sn * </>(i + 1)

formrot (7(1), e, en, sn)

applyrot (en, sn, </>(*), 7(1 + 1),1)

applyrot (en, sn, d, <j>{i + 1), 1)

for j <— i,..., n — 3

formrot (<^(j), d, en, sn)

applyrot (en, sn, 7(; + 1), 4>(j + i),i)

e <- sn* j(j + 2); 7 (.7 + 2) <- en * 7(j + 2)

formrot (<fi(j), d, en, sn)

applyrot (en, sn, 7(j + l),<f>(j + i),i)

d<-sn* <ß(j + 2); <j>(j + 2) *- en * <f>(j + 2)

endfor

formrot (<j)(n — 2),d, en, sn)

applyrot (cn,sn,^(n— \),4>{n— 1), i)

e *— sn* 7(n); 7(n) <— en * 7(n)

formrot (7(n — 1), e, en, sn)

applyrot (en, sn, (f>(n — l),7(n),l)

endfor

end

This algorithm constructs and applies
2 n — n Givens rotations. A similar proce-

dure backchase to that illustrated above can be used to produces orthogonal matrices

36

Ü,V £TZnxn suchthat

B = ÜTBV, VTz = pen, p=\\z\\ (3.2)

where B is upper bidiagonal.

For the sake of brevity, we do not present backchase. It is computed by reversing

the two vectors 7(1: n) and (j>(l: n - 1), performing forchase and reversing the vectors

back. The algorithm would just have the loop in forchase go backward instead of

forward.

3.2.2 A Chasing Routine for a Lower Triangular Matrix

We now describe a simple chasing routine for a lower triangular matrix. This

routine, for given a vector z and a lower triangular matrix C, finds orthogonal matrices

D and V such that

C=ÜTCV, VTz = pev p=\\z\\ (3.3)

where C is lower triangular.

Consider the 4x4 case in Fig. 3.2. We state the procedure lchase formally below.

ALGORITHM 3.5. Given a lower triangular matrix C and the updating vector z, this

procedure performs a chasing operation on C, and produces a lower triangular matrix

C that satisfies (3.3).

procedure lchase(c, z, n)

for i *- n — 1,..., 1

formrot (z(i),z(i+ l),cn,sn);

e < sn * c(i, i); c(i, i) <— en * c(i, i);

applyrot(c(i + 1: n, i), c(i + 1: n, i + 1), en, sn, n - i);

37

I i
(z z z z\ I

c
c c
c c c

z z z 0\

V

c
c c
c c c c
c c c c I

i i
/ z z z 0\

c
c c
c c c

\c c c cI \c c c cI

i i
(z z 0 0\ Iz 0 0 0\ (z 0 0 0\

/z z 0 0\
c
c c c"
c c c

\ c c c c/

c
c c
c c c

\c c c cJ

c c
c c
c c c

\c c c cj

c
c c
c c c

\c C C C J

Fig. 3.2. Chasing Steps for a Lower Triangular Matrix

formrot (c(i + 1, i + 1), e, en, sn) ;

applyrot(c(i + 1,1: i), c(i, 1: i), en, sn, i);

endfor

end

A similar chasing procedure can be specified for an upper triangular matrix when

modifying the URVD. Stewart [102] points out that if the matrix C is from a rank

revealing decomposition with k large rows and n — k small rows, this algorithm can yield

k + 1 large rows, thus the rank revealing nature of C may be lost.

3.3 qd Procedure

It is easy to find an orthogonal matrix Q as a product of Givens rotations such

that

B = QB

38

where B is lower bidiagonal and B is upper bidiagonal. This is the same as one unshifted

Fernando-Parlett qd step [40], hence the name. Fig. 3.3 illustrates the reduction steps

for a 4 x 4 case.

(h- \
(b b \ lb b \ ib b \

b b —► b (b b b b
b b -+ b b A b b

\ b bj \ b b) -\ b b) \ b)

Fig. 3.3. One Step of qd Procedure

ALGORITHM 3.6. This procedure produces the orthogonal factorization of a lower bidi-

agonal matrix. 7(1: n) is the diagonal on input and output. <f>(l: n — 1) is the subdiagonal

on input and the superdiagonal on output.

procedure qd (7,^, n)

for i «— 1,.. .,n — 1

formrot(7(i), 4>(i), en, sn)

(f){i) <— sn* f(i+ 1)

j(i + 1) <— en * j(i + 1)

endfor

end

39

3.4 The LINPACK Downdating Procedure

The following downdating procedure due to Saunders [46] is considered the most

accurate downdating procedure that does not require information from the first row of

U in (1.1) [20] (if we have that first row, we obtain a procedure that is backward stable

in the strong sense). It is the procedure that is implemented in the LINPACK [37].

ALGORITHM 3.7 (THE LINPACK DOWNDATING PROCEDURE). Given M e"R.nXnand

n - T - T z G TZ , this algorithm computes the downdated matrix M, that is, M M = M M —

T zz .

Step 1. Solve

T M a = z (3.4)

If ||a|| > 1 declare M M — zz indefinite and stop. Otherwise go to Step 2.

Step 2. Compute a = \/l - ||a||2 and Q = ^ • • -Qn £ ft(n+1)x(n+1) be a prod-

uct of Givens rotations, Q. = J(l,i+ 1,0.), i = 1,.. .,n such that

Q

I \
a

\a)

= e.

Step 3. Compute

Q

(n \

\M J

I T\

VM j

We note that if M is upper or lower triangular, it is simple to choose Q as a product

of Givens rotations Q. ,Q„,.. .,Q so that M remains upper or lower triangular. Pan

[85] shows that for M upper triangular, this method can be sped up by combining the

forward substitution phase with the application of the Givens rotations.

40

3.5 2x2 Updating/Downdating Procedure

The following algorithm computes orthogonal matrices G = J(l, 2, <j>), G =

J(l,3,<£_) € ft3*3 for some </>., t = 1,2, such that

'o oN

2 6 « a 6

1° CJ
(3.5)

ALGORITHM 3.8 (2x2 UPDATING). Given scalars a, b, c, £, p, this algorithm computes

scalars 2, b, c of an updated matrix defined in (3.5).

function [2,6,c] = up22 (a,b,c,£,p)

2 = cabs(a, £); ä = a/2; £ = £/2

b = üb — £/>; c = ap — £6

end

Similarly we give an algorithm, which is based on Algorithm 3.7 for downdating a

2x2 matrix, that is, computing orthogonal matrices Q - .7(1,3,0),£? = J(l,2,02) €

1Z such that

0 2 6

0 0c

T T

/ \
a 0 0

ß a b

7 0 c

(3.6)

where we solve

a 6

0 c

\T/ „\ / \
ß

v7/
, a = \ll-ß2-

\p)

(3.7)

41

where J(i,k,6) is a Givens rotation in the (i,k) coordinate plane for some 0.

ALGORITHM 3.9 (2x2 DOWNDATING). Given scalars a, b, c, ß, and 7, this algorithm

computes entries of downdated matrix defined in (3.6), namely, a, 6, and c.

function [5,6,c] = down22 (a,b,c,ß,f)

a — yjä + 7\/5 — 7

p = 7c/5

c = ac/S; 5 = 5a; b = 5b — pß

end

42

Chapter 4

Modifying the ULV Decomposition

4.1 Introduction

771X7Z We give methods for modifying the ULVD. Rewrite the ULVD of A g 72. of

(1.1) as

A = U
(C^

\° /
VJ (4.1)

771X 772 71 X 71
where U ElZ and V G 1Z are orthogonal, and

C =

k p-k n-p

LOO

F G 0

0 0 0
/

k

p—k

n—p

(4.2)

so that our algorithm of ULVD separates out columns that are exactly zero. Here C

takes the position of M in (1.1).

We also rewrite z of (1.9) as

z = VTr =

I \
x

y

\yoJ

k

p-k

n—p

(4.3)

43

As in the updating routine of Stewart [102], the matrices C and V can be produced

2
using O(n) Givens rotations, thus updating the factorization in ö(n) operations. Our

approach to downdating the ULVD (4.2) uses ideas from chasing algorithms [102] and

from the downdating algorithm due to Saunders [46, 85].

The following are the main results of this chapter:

1. A blockwise procedure for downdating the ULVD that yields

/ - \ L 0 0

C= F G 0 (4.4)

0 0 0

where

\\{F G)\\ < \\{F G)\\, \\{F G)\\F < \\{F G)\\p

and X and G are lower triangular, and the blocks are conformal with (4.2).

T T 2. A downdating algorithm that works whenever L L — xx is positive definite, the

same as if we were downdating only L. Our technique maps back onto the original

matrix A in a more satisfactory manner than the technique given by Park and

Eiden [87].

3. An error analysis of this procedure showing that the singular subspaces of the up-

dated matrix are as good as can be expected. We also give some new perturbation

results showing that the condition of the downdate is related only to the L block

in (4.4). Thus tracking the ULVD is a very stable method for tracking subspaces.

Our ULVD downdating algorithm is proposed in detail in Section 4.2. Section 4.3

gives an error analysis of the algorithm. The accuracy of the computed subspaces for

44

large and small singular values is assessed. In Section 4.4, we give numerical tests of our

algorithm on recursive total least squares problems.

4.2 A Procedure for Downdating ULV Decomposition

4.2.1 Description of the Algorithm

We introduce the following algorithm for downdating the ULVD. Our procedure

T T produces a downdated matrix C if for L and x defined in (4.2) and (4.3), L L — xx is

positive definite.

ALGORITHM 4.1 (PROCEDURE FOR ULVD DOWNDATING). Given a lower triangular ma-

trix C of the form (4.2) and a vector z of the form (4.3), this algorithm finds a lower

triangular matrix C of the form (4.4) and orthogonal matrices Ü and V satisfying (1.12).

Initially, V = V. The components in y are ignored (will be justified by Proposition 4.2).

(i) (i) Throughout the description of this algorithm LK ' and GK ' denote lower triangular ma-

trices, jf = [JP
(i)]Te1, and g® = e^G®^.

Step 1. Compute orthogonal matrices Ü , V 6 VSP~ >x^p~ > such that

G{l) = Ü^GVv V^y = pe{P-k\ p = \\y\\

Also, compute

fM = Ü*F.

Update Ü - d*g(Ik+vOvI);V <- VdiagfJ^,J).

45

Step 2. Find an orthogonal matrix U G HK ' v ; such that

/,(»

v ° »ff/

/

= 01
L 0

\

Define J1' ' = (I-e e)F^ \ that is, as F^- ' with its first row set to zero. Update

Step 3. Use Algorithm 3.7 to find a vector a £ 11 , scalar a, and orthogonal matrix

^ (^l)x(^l)suchthat

[LWfa = x, a = y/l - ||a||2, f/„T
a

Va/
= er (4.5)

Then compute

/ T \ x

i i(2)
= aT

3 I .(1)

Step 4. Compute

if P < 5ii then

p = a (p — h a)

(A

\h)

(~\
= ui

\h J

(3) , (2),2 ~2
' 9n ~Wn] ~p

46

else 9n <P

1 A ^ p-bp

\ n I

(„(2) \
= u: 'ii

V " I
^ff- (4.6)

where 6p = p — (ag^ ' + a h).

endif

Define U = J(l,k+ 1,0) as the Givens rotation with en = cos(0), sn — sin(0)

such that

en = <
,g>/,g> ifpg^o

,(2)_ if<7^=0.

Update Ü <- tffr diag(£/,,7).
4 O 72—ft

Step 5. Find an orthogonal matrix V 6F ' ^ ' such that

(L^ o) = (J<2) 7^>2

(F(3) G(4)) = (F(2) G(3))diag(v2,/n_it_i)

Update V - Fdiag^, J^J. If ^ # 0

C =

(- \
L 0 0

f1 G 0

0 0 0

x(3) 0 0

F(3) G<4> o

0 0 0

and go to Step 7; otherwise, go to Step 6.

47

Step 6. If g\ ' = 0 then /j ' = 0 also since it was formed from <r ' using V . Thus
11 1 Ll A

p—k

k

■p—k

(L^ 0

^(3) G(4)

it p-k

X 0

0 0

F cF>

\

I

k

1

p-k-1

where G^ ' is a lower Hessenberg matrix. We then find an orthogonal matrix

V G n(p~k)x(p~k) and an orthogonal permutation matrix Ü, G ft(p_fc)x(p~fc)

3 «>

such that

Update U

form

dTG^\ =
5 o fö °1 1° °J

p-fc-1

1

i/diag(7)k+1,i/5,/n_p);y <- Vdiag^,^,/^). Thus C has the

it p-k-1 n-p+1

f , . \

c =

X 0 0 it

F G 0 p-k-1

0 0 0 n-p+l

Step 7. Perform a ULVD of X to determine its numerical rank. If we have deter-

mined the rank of L correctly, the rank of X should be k or k -1. Make appropriate

adjustments to F and G.

We give an expression for U in the statement of the algorithm, but our analysis

assumes that the left orthogonal matrix U is not saved. Although it is not computed by

48

the algorithm, for the discussion that follows we need to define the vector z by

-T
z = V z =

(\
X

\yo/

k

p—k

n—p

(4.7)

2 2
Algorithm 4.1 requires Ilk + 6(p-k) + 12k(p — k) + ö(p) flops for Steps 1-5 and

2
Ak + O(k) flops for Step 6. When V is modified, additional 6n(p — k) + 6nk flops will

2
be required. The deflation step requires about vk + 16nk flops, where v is the constant

depending upon the condition estimators used [61].

Fig. 4.1-4.2 illustrate the action of our algorithm on a 6 x 6 matrix with k = 3.

Here /, g, and / denote components of L, F and G, and x, y, and h are components

of those vectors. Rightarrows and downarrows denote premultiplication and postmulti-

plication by orthogonal transformations from the left and from the right, respectively.

Here p, h and h have meanings consistent with those in the statement of Algorithm 4.1.

ik — —

A set of —► denotes the applications of U and U in Steps 3 and 4 when downdat-
o 4

(2)
ing L and g> '. Step 6 is illustrated in Fig. 4.2. Note that for Steps 3-5, the components

x and y have a different interpretation from Steps 1 and 2 above, they are now the values

"downdated." To illustrate their action properly, Ü and D are given in reverse order

rather than the order that they are actually applied.

REMARK 4.1. This algorithm works if

p—k n—p

'a o^

0 0

p—k

n—p

49

(x
I
I
I

f f
f f

\f f

x y
i i
y y\ (X

i
i
I

f

y y o\

g

I',
i
i
f
f

\f

i i
y y o\

I X X

I I
I I I
f f f
Iff

\f f f

x p 0 0\

9/

I
I
I
f
f

\f

P 0 0\

9
9 9
9 9 9'

I x x
I
I I
I I

f f
f f

\f f

x p 0 0\

/ h

0 9
f 9
f 9 9/

I
I
I
1

I
I I
0 0

p 0 0\ (x
\
I
I
0 0

/ /
\f f

P o 0\
h
h
h
9
9 9
9 9 9'

/O 0 0 0 0 0\
' / ' *

/ I
I I I
0 0 0

/ / /
\f f f

I x x
I
I I
I I

f f
f f

\f f

(a) Steps 1 and 2

i
IX X X

I
I I
I I I
0 0 0

i i

f

y y y\

v\

9/

I
I X X

I
I I
I I
f

\f

I
0 0

/ /
/ /

/
/
/
/
/

y y y\

y y\

(b) Steps 3-5

Fig. 4.1. Reduction Steps for Downdating the ULVD

50

i 1 1 i
Ix X X y y v\ lx x x y y

I
y\ 1 x x x y

I

I I I I I I
I I I I I I I I I
0 0 0 0 0 0 0 0 -► 0 0 0 0
f f f

\f f f
9
9

9
9 g)

f f f 9
\f f f 9 9 V "

f f f 9
\f f f 9

('<

X i y y y\ (x
l

X X y y y\

I I l I
I I l l I I

-
f
0

f
0
/

f
0

/

9
0
g g 1

f
f

f
f
0

f
f
0

9
9 9
0 0 0/

y y\

Fig. 4.2. Reduction Steps When G Becomes Singular

T T T
is substituted for G and (y y) is substituted for y. That is, it is not necessary

to explicitly handle the zero block, it can be made part of G. That is the original

formulation in [102]. However, if that is done, whenever y ^ 0, any zero diagonal will

T T T be chased to the g position, all of (y y.) will be treated as "noise". If ||G|| > /x,

as is often true in practice, then \\y\\ is possibly significant whereas y can only result

T from computing errors from computing (4.2) or multiplying z = V r. Our formulation

neglects part of y only if the downdate of

' L ^

F G

T T T with (x y) cannot be done. In updating, there is no similar benefit to separating

out the zero block.

51

REMARK 4.2. We note that (4.6) in Step 4 is equivalent to computing

/ \
P = *l t 9^ + (Sp)a X

h +(6p)a
, Sp = p-(ag^ + a h)

I

-T T T ~
since U maps the additive noise vector (Sp)(a a) into (Sp)e . Only h is of interest

in the computation.

C satisfies (4.4) as is proven quickly in the following proposition.

PROPOSITION 4.1. For the matrix C resulting from Algorithm 4-1 we have (4.4).

Proof. This proof is a straightforward consequence of facts about orthogonal

transformations. Every step except two and four either does not affect F and G or just

multiplies them on the left or right by orthogonal transformations, thus for those steps

we need only invoke orthogonal invariance.

For Step 2, we have that

FW = FW-e/iFU,
(, ^ / \

h
= v?>

0

a®
2 «W \yu) ^11 /

are Thus ||(.F(2) G(2))||F < \\(FW G(1))||F foUows from the fact that F(2) and G(2)

no larger than F^ ' and G^ ' componentwise. For the Euclidean norm, we note that for

any vector

M\ k
v =

„(2)
/

p—k

52

thus

+<VM42VH^(2V
> ||(f(2) G(2)M|2

for all v G 72. . A simple argument on the definition of the Euclidean norm yields the

inequality ||(F(1) G(1))|| > ||(f(2) G(2))||.

Step 4 clearly produces \g\J\ < Isii I- The same argument as above yields

||(ir.(2) G(3))|| < ||(F(2) G(2))||

and likewise for the Frobenius norm. Thus we have (4.4). D

In the absence of rounding error, we can show that the "additive noise" in Step 4

satisfies an important consistency property. We assume that C is orthogonally equivalent

to A + 6A where 6A consists of errors from previous orthogonal transformations.

PROPOSITION 4.2. Assume that Algorithm 4-1 is performed in exact arithmetic, that U

~ ~ _ ~T
and V in (4-1) o,re exactly orthogonal. Let U and V be as in (1.13) and let z = V r be

~ T
as in (4-7)- Assume that Ue = e , and that z = V r is computed exactly. Also assume

that C satisfies (4-1) with backward error 6A, that is

A + 6A =

T . , T \ r + or

Ä + 6A
= U

(c^

\° J
VT. (4.8)

Then z and C satisfy

53

A + 6AQ =

(T \ r

A + SÄ
U

I T \ z

C

\ ° /

(4.9)

Thus ^8 A || = ||£.i4|| < \\8A\\ and the same result holds for the Frobenius norm.

Proof. We have that

ÜJ
<c^

\° J
diaS(^Vn-p) =

/ T \
x + Sx (p — Sp)e 0

L^ he\ 0

jm G(3) o

0 0 0

We also have that

I -T\

\C)
^^'^•W^^'Vt-i)

T T\
X p6l ^0

L(2) he 0

F(2) G(3) 0

0 0 0

54

Let V = V diag(J , V I) then from the definition of V in Algorithm 4.1 it follows

that

/

[/

/ T \ z

C

\ ° /
V* = u

T T \
x peY yQ

L& Ke\ 0

F(2) G(3) 0

0 0 0

äiag(Ik,vT,In_p)VT. (4.10)

However, we have

U
'c^

\° I
V± = U

(T \ x + 6x (p — 6p)e 0

L& ~he\ 0

F(2)

0

G (3) 0

0

^/^„y (4-n)

= A + 6A =
r + or

Ä + 6Ä
(4.12)

Comparing equations (4.10) and (4.11), using the fact that

Vdiag^V»-,)

/ \
x

Pei

V h J

= r

and the assumption that Ue = e , we have (4.9). D

Therefore, we have shown that the additive noise in Step 4 and the act of ignoring

y actually make the matrix C closer to being orthogonally equivalent to Ä than C is to

55

A. In Section 4.3, we show that the results of Propositions 4.1 and 4.2 make Algorithm

4.1 a robust algorithm for tracking the ULVD.

4.2.2 Relation to Park and Elden's URV Procedure

A recent report by Park and Eiden [87] gives a method for downdating the URVD.

For that algorithm, we are downdating an upper triangular matrix M of the form (1.4).

The procedure is as follows.

1. Find an orthogonal matrix Ü and an upper triangular matrix R such that

X

\ R)

= U.
0

R
(4.13)

Determine S and y such that

T\

= Ü,
y

(4.14)

2. Find an orthogonal matrix U and an upper triangular matrix T such that

(~T\
y

\f i
= D„

'^

\T/

(4.15)

The downdated matrix M is

M =
I R 5^

0 T

56

as before.

Park and Eiden [87] recommend the use of hyperbolic rotations in (4.14). That
rp rp

can be avoided by a simple and well-known trick. Let (a a) be the first column of

Ü as determined in (4.13). Then we note that

/ \

y = (y s)
a*

^ßl /

which implies that

-1/ CT ,

Once y is determined, we obtain S from

y

\s i
= v. y

T T
HT T -yy is indefinite, Park and Eiden substitute for (4.15) the operation

u:
(\

0
V =

(T\
pen

\T) { f)

where V is an orthogonal matrix such that V" y = pe and so that T is triangular. They

then compute

(T\
' y

\s i
= u: v.

\s i

57

-T —
where j/ = V y. The downdated matrix T = T except for t , q = n- k. That entry

satisfies

t = <
9?

 ifiy<H
-2 2 / — p otherwise .
9?

The first condition is identical to the case where T T — yy is indefinite.

REMARK 4.3. Algorithm 4.1 is related to the above algorithm although the essential

steps of them were developed independently. Steps 1 and 2 of Algorithm 4.1 reduce the

ULVD downdating problem to that of downdating the (A; + l)x(A; + l) upper triangular

matrix

it 1

(L® h \ >

\
0 9 (2)

11

(4.16)

The Park-Eiden algorithm applied to this matrix would perform Steps 3 and 4 of Algo-

rithm 4.1 except that it would perform Step 4 according to

"I
I ~\

\h 1

(\

\h)

(4.17)

instead of according to (4.6). The consistency property in Proposition 4.2 does not hold

if we use (4.17). That can be seen when (4.17) is placed into the proof. Equation (4.10)

does not change, but we do have

vi (g{2)
\

P - [<5p]a
\

h J \h~ l6P\a j

(4.18)

58

P) - ."I where Sp = p - gK ' = a 6p using terminology from Algorithm 4.1. We note that the '11

additive noise is multiplied by a factor of a > 1, but that is not crucial. Equation

(4.18) implies that equation (4.11) in the proof of Proposition 4.2 is replaced by

U
<o^

\c I

T ~
V1 = U

I T \
x + Sx (p — [Sp\a)e 0

X(2) (h-[Sp\a)e^ 0

F(2)

0

G (3) 0

0

di.g(ik,v?,in_p)v
T.

Thus the consistency property of Proposition 4.2 does not hold.

The Park-Eiden URVD algorithm requires 5k2+5(n-kf+8k(n-k) + 0(n) flops.

This algorithm is fewer flops than is required to downdate the ULVD by Algorithm 4.1,

but there is an important advantage to maintaining the ULVD instead of the URVD.

Both the URVD and the ULVD will tend to produce a V matrix such that

v = (Vj v2), v e nnxk, v2 e ^"x(n"^

where range(V) and range(V) are approximations to the subspaces associated with the

first k and last n — k singular values of A respectively. However, as found by Fierro and

Hansen [43], if F in (4.2) and S in (1.4) satisfy ||F|| « ||5|| and if

inf \\Rx\\ > e > max \\Gy\\,
1*11=1 l|y||=i

then the ULVD yields a more accurate approximation of the desired subspaces of A.

59

4.3 Error Analysis

4.3.1 Error Bounds on Algorithm 4.1

(2)
We begin by showing that if p < gK ' in Step 4 and y = 0, then Algorithm 4.1

produces a matrix C such that

VTCTCV -(z + Sz)(z + Szf = (C + SC)T(C + SC) (4.19)

for some orthogonal matrix V. This is the so-called mixed stability criterion defined in

(2)
Definition 2.7. If in Algorithm 4.1, y ^ 0 or p > g^ ', then we are, in fact, producing 11

C such that

VTCTCV - (z + Sz + 6z)(b + 6z + Szf = (C + SC)T(C + 6C)

for some orthogonal matrix V. In the context of Algorithm 4.1 ,

^-diagCV^Hiag^Vn-P
[Sp)e

Jfc+1

"0 /

(4.20)

(2) T where 6p = p — (ag). ' + a h). Note that

ll^ll2 = |M2 + ligi2 = \P - («fffi} + flT/*)l2 + Kil2-

We note that V = I , if Step 6 is not done. The effect of Sz is discussed in Appendix

B of [13]. It is essentially the same as the effect of Sb as bounded in Proposition 4.3.

The analysis in this section will ignore that effect, it will assume that we are analyzing

the problem (4.19).

60

We define the scaling matrix

-1, A = diag(J,,||G||||I 1/ ,) -k> (4.21)

We expect the rounding errors from Algorithm 4.1 to be columnwise proportional to

diagonals of A.

THEOREM 4.1. Let Algorithm J,.l be performed on a matrix C of the form (4.2) in

floating point arithmetic with machine unit \i. Then there exist orthogonal matrices

Ü G nin+1)*{n+l) ,V G KnXn such that

Z+6z I _T

I = u

C + SC

'o^

\c/

where

Sz = HA-^zll, ^ = ||^CA-1||

sz,sc<(ß(p)\\c\\pi + o(fJ
2)

where A is defined in U-21) and 4>{p) is a modestly sized function of p.

Theorem 4.1 is proven in Appendix A of [13]. This theorem is somewhat similar to error

bounds on orthogonal factorization of matrices with disproportionate rows [8, 12].

The following corollary gives the error bounds that we get if we use no structure

of the problem (4.2) or the resulting matrix (4.4).

COROLLARY 4.1.

'«^

\6C I
< *„(p) ||C|| M + O(M^) (4.22)

61

where ^„(p) is a modestly growing function of p.

In the next section, we discuss the effect of these rounding errors on the singular

vectors of the matrix C.

4.3.2 Effect of Rounding Errors on Singular Vectors

A common reason for computing the ULVD is to separate subspaces associated

with large and small singular values. For the ULVD, after downdating , there will be /

large singular values where I = k OT I = k - 1. If W = (W W_), W £ 1Zn , W €

TZ v Ms the matrix of right singular vectors of C, then the computed range(W)

and range(VT) should be as close as possible to the expected ranges. In this section,

we show how reliable we can expect these subspaces to be. Our bounds are somewhat

better if / = k, that is, if the downdate does not alter the rank.

We need to measure the effect of both 8 and 8 on the invariant subspaces

associated with the / largest singular vectors and the n — I smallest ones. We define C

and C as matrices such that

ClC = VJ C1 CV - zz (4.23)

CTC = VTCTCV - (z + 8z)(z + 8z)T. (4.24)

Defining C as in (4.19) implies that

C = C + 8C. (4.25)

It is also necessary to define u by

u = max{l, ||[£(2)rTx||, \ß~Tx\\}- (4-26)

62

Note that the definition of u involves only the L block and is related to the condition

number given by Pan [86].

First, we need the following three technical lemmata.

LEMMA 4.1. The vector h and scalar p from Algorithm 4-1 satisfy

I \
P

< \\G\\. (4.27)

Proof. We note that

/ \
P

< 'm °)t)T
G

V. < INI,

which completes the proof. D

LEMMA 4.2. Let z be as in (4-V resulting from Algorithm 4.1. Then

11*11 <II<Z||(1 + «).

Proof. From Algorithm 4.1 and (4.20) we have that

z =

/ \
X

\yo/

diag(/i, if, /) diag(if, J^) diag(/fc, if, J^)

I \
x

\y0)

63

By the orthogonality of V we have

= \P\,

where

x

V /
KJ

/ \

\p I

Now consider the least squares problem:

mm
ae1lk

([L{2)]T "
a —

\m\ rT
\ H) \p)

Since

TT\

-^
([L(2)]T)

hT

we have

\P\ = min
([L{2)f) H
\ h)

a —

{")
^ (2) — T

Let 2 = [Xv '] a;. Then from Lemma 4.1

\P\ <
([L{2)]T ^

a —

(\
X

I?
\ h I \p)

= \h a — p\

< H + |ftra|<||G|| + ||G||||[i^r^ll

< l|G||(l + a;),

64

which completes the proof. D

It is necessary to bound the effect of A and z on the singular vectors of C.

LEMMA 4.3. Letw., i= 1,2,...,n, be the right singular vectors of C. Let A be defined

by (4-21), let z be as in Lemma 4-2, and let u be given by (4-26). Then

\&w.\\<\\r\\JoU\\Gf<\\rl\\{o-. + \\G\\), i = i,2,...,P

\z1w.\<u(a. + 2\\G\\), t=l,2,...,p.

Proof. We note that for i = 1,2,..., p,

w.

w: '
i

(2) w:
t

\ I

k

p—k

n—p

lt.\s obvious from the form of C, that the last n — p components of all its nonzero singular

vectors will be zero. It should also be noted that w. = e.,i = p+1,...,n form a singular

subspace for the last n — p zero singular values. For i = 1,2,..., p, we have that

llA^ii^ii^^i^ + iiqi2!!!-1!!2!!^!!2.

Taking square roots establishes the first bound on ||Au;.||. Continuing we have

\AW.\\2 = \\rliwM\\2 + \\G\\2\\L-l\\2

< ||X-1||2(||XJ1)||2 + I|G'||2)

65

< llX^llV.+IIG'll2)

< wrYia. + wGwf.

Taking square roots again establishes the second bound on ||Aiu.|

Now

\zTw.\ < \xTw^\ + \yTwf\

< \xTrllwf\ + \\y\\

< \\L-Tx\\ a. + \\y\\

< W(a.+ ||G||) + ||G||

< u(a. + 2\\G\\),

which completes the proof. D

Now we give a perturbation bound on the effects of the backward errors \\Sz\\ and

||*7||.

LEMMA 4.4. Assume the terminology of Lemma 4-3. Let w., w., w., i = l,2,...,n be

the right singular vectors of C, C, and C in (449), (4-23), and (4-24) respectively. Let

ö > •• • > a be the singular values of C, and let a^> ■ • ■> a be the singular values
1 - - n " J ' 1 — ~ n

of C. Ifa.ya. and a. > a. we have
J i J i 3

1 J [(Ti-a3 *]-*))
+ 0(\\6z\\2) (4.28)

\w
Tyj.\<^L + 0(\\6C\\2). (4.29)
» 3 a. — a.

* 3

66

Proof. Equation (4.29) is just a standard error bound based upon the perturbation

-T -
of the eigenvectors of C C. From the Kato [69] expansion for eigenvectors we obtain

\w. w. 1 i r

wT(z(6zf + {Sz)zT + (6z)(6zf)w.
1 3

~2 ~2
a. — a.

\\6z\\(\zTw\ + \zTw\)

* 12-45 '-+ 0(\\Sz\\\
a. — a.

» J

+ Ö(|N|2)

From Lemma 4.3 we have

-T~
cr. + cr. + 4 ||G||

1^; ö,| < « 11**11 _/ „2— + 0(11**11*).
i 3 a. — a.

An algebraic simplification leads to (4.28). D

Simply using the definition of the || • ||„ norm leads to the following proposition.

It tells us how good our subspaces will be if we only have a bound of the form (4.22).

PROPOSITION 4.3. Assume the terminology of Lemma 4.3. Let W = (W W), W e

V, , W £ 1Z ^ ' be the matrix of right singular vectors of C and let W =

(W W) be the corresponding matrix of right singular vectors of C. If a. > a.

then

\\W?W2\\F < y/l(n-l)
u \\8z\\ + \\SC\\ , 4u||(7||||«z||

°l ~ CT/+1
+ 2 2

Cl ~ al+l

(

+ o
(SA

2\

\
[scj

/

Proposition 4.3 applies even if the downdate changes the rank. The condition

number u in (4.26) depends solely upon the X-block, the matrix C does not have to be

67

well-conditioned or even full rank for the downdating problem to be well-conditioned as

is required in previous analyses [86, 87]. If there is no rank change, that is if / = k, we

can get an even better bound as shown below.

We define e and E according to

e = A 16z/6z, E = SCA lßc, (4.30)

where 6 and <$_, are the bounds from Theorem 4.1. Note that ||e|| = \\E\\ = 1. First, a

technical lemma characterizes the vector z that is downdated.

LEMMA 4.5. Assume the results and terminology from TheoremJ^.l. Letw.,i= l,2,...,ra

be the right singular vectors of C and let w. , i = 1,2,..., n be the right singular vectors

of C. Let a > a > ... > a be the singular values of C. Then for all i and j such that

a .± o, we have

J a. — a. J 3

Proof. From Kato[69], we have that

w.A(ze +ez)Aw.
w.w. = S -^ ^ 5 + 0(6Z)

t j z ~2_~2

where e is defined in (4.30). Taking norms we obtain (4.31). D

LEMMA 4.6. Assume the results and terminology from Theorem 4-1- Let w., i = 1,2,.. .,n

be the right singular vectors of C and let w. , i = 1,2,..., n be the right singular vectors

68

of C = C + 6C as in (4-25). Let a > a2> ... > a be the singular values of C. Then

for all i and j such that a. > o. we have
* 3

^III-W + HGH)
\w. w.\<2 — *

* 3 a.- a.
i j

+ °(K (4.32)

Proof. Again using the Kato [69] expansion

wT(C SC + CTSC)w.
wi ™j = ~ 2 2 " + °(C)-

Using the definition of E in (4.30) we have

wTAECw.+wTCTEAw.
wi ™j = 6c~ k-h l + °('c)-

* 3

Using norm inequalities we have

T ~
\w. w.\ < 6~, 1 % 3 C

llAto.H \\E\\ \\Cw\\ + HCii; || ||£|| ||Ato ||

2 2
a. — a.

i 3

+ o(s- c (4.33)

Using Lemma 4.3 and the fact that ||CIü.|| = a. yield

= -li

\w. w.\ < 6~-
' i 3' ~ C

(a. + \\G\\) a.+ ^. + 11011)0-.

2 2
a. — a.

» J

+ 0(6Z
C)

Reorganizing leads to (4.32). D

69

Now we can bound the quantities in our lemma on the singular vectors. These

bounds actually apply to the singular vectors of C, but we will ignore second order effects

and use these bounds for the singular vectors of C.

Now we need a bound on the errors in the singular vectors of C from 6 . To
z

within rounding error, the same bounds as in Lemma 4.3 will hold for w., i = 1,2,...,n.

That is, \\zTw.\\ < u {a. + 2 ||G||) and ||A«.|| < fL^W (a. + \\G\\).

LEMMA 4.7. Assume the terminology of Lemma 4-3 and the results and terminology of

Theorem JL.l. Assume that a. > a.. Then
* J

-T~ S u \\L -1,

Iw.w.l <2-2-
j * a. - &. L J 3F. +1.5 11^11 + 2 11011^+ *.) + £>(*;).

Proof. Combining Lemmata 4.3 and 4.5 yields

rp S W \\L
w . w.\ < —

3 I

-1,

_2 ~2
a. — a.

i j

(ä. + 2||G||)(<7. + ||G||)

+ (äi + 2||G||)(cF. + ||G||)

* «||£_1||

-i- °«)

= 2 z 2" 2 "<g,-gj + L5 WG^i + 5,-) +2 HGlft + °(fy a. -o. J J

» 3

< 2 -4r —
a. — a.

1 j

ä. + 1.5||G|| + 2||G|r/(ä. + ä.) + o(*;),

which completes the proof. D

The proof of the following theorem is obvious from Lemma 4.7.

70

THEOREM 4.2. Assume the hypothesis and terminology of Lemma 4-7. Let W be the

matrix of singular vectors of C and let W be the matrix of singular vectors of C. If

w = (w1 w2), w = (w1 w2),

where W W e Tlnxk, and WyW2e nnx{-n~k^ then

K"\\L~1\\
\W\W2^F ^ 2 >/*(""*) 1 2UF ~ v h~dk+i

54+1 + 1.5||G|| + 2||(?||2/(aFjb + 5jb+1)]+0(^)

Analogously, we can bound the effect of 6^.

THEOREM 4.3. Assume the hypothesis and terminology of Lemma J^.6. Let W be the

matrix of singular vectors of C = C + SC and let W be the matrix of singular vectors of

C. If

w = (w1 w2), w = (wl w2),

where W ,W e TZnxk, and W ,W G ftnx("~^ then

T~ , UI^W +||G||) 2s
\\W[Wj\F < 2 Jk(n - k) -£ j—te + 0(62

c).
k k+1

The effect of 6^ is, in fact, somewhat less critical than that of 6 as has been

stated in other analyses of this problem [86, 87, 99]. We note that the error bounds in

71

Theorems 4.2 and 4.3 are relative gap bounds on the error in the subspaces similar to

those in [11, 36].

If ||X || ||G|| < 1, these bounds are a significant improvement over those in

Proposition 4.3. This is one of the reasons for maintaining the property (4.4).

4.4 Numerical Examples

In this section, we present a few examples from numerical experiments. These

tests were performed using MATLAB on a SPARCstation 5 in IEEE Standard double

— 1 fi
precision with machine precision « 10 . The algorithm employed the sliding window

technique described in Section 2.7.3.

At each step of the sliding window method with the window size m , an m x n

data matrix is constructed from an m x n observation matrix A by adding a new row to

the data matrix in the previous window and deleting the oldest row from it. In step j,

the row m + j of the observation matrix is added and the row j is deleted, giving the

data matrix A..
3

Computing the ULVD of initial data matrix is described in Section 2.5.2. Then

Algorithm 4.1 takes the lower triangular matrix (middle part of the decomposition),

the orthogonal matrix (right part) as initial input and the modifying vector r, and

T successively modifies these matrices at every window step. The vector z = V r is

computed at the beginning of each window step.

We tested our algorithms in the context of the total least squares (TLS) problems.

See Section 2.7 for details. We used the TLS solutions from the Jacobi SVD as reference

in checking the accuracy of the solution and rank estimates of our algorithms.

72

Fig. 4.3-4.5 show the rank estimates by our algorithm, which are identical with

those of the Jacobi SVD algorithm. The horizontal axis represents the window steps and

the vertical axis the numerical rank of the window matrix.

The distance between the subspaces is given in the next plot using the Definition

2.3. Let

A. = Y.Z.WT, W. = (W.. W..)
3 3 3 3 3 Jl J2y

be the SVD of A. computed by the one-sided Jacobi method at step j. Let

A. = U.C.VT, V. = {V.. V)
3 3 3 3 3 Jl 3^

be the ULVD of A. computed by Algorithm 4.1. Note that here we are discarding U..

Finally, let

C. = Y.1:.W
T

, w. = (w„ w.j
3 3 3 3 3 Jl 3%

by the SVD of C. computed by the one-sided Jacobi method. Define W. by

W. = (W., W.n) = V.W..
3 jl 3* 3 3

Define the angles between the subspaces

sin 61 = ||W£V.2||, sin(ö2) = ||W^V.2||, sin(03) = ||w£w\2||. (4.34)

The angles 6., i = 1,2,3 represent, respectively, error between the true noise sub-

space from the Jacobi SVD and the approximate one from tracking the ULVD, the

approximation error from the ULVD, and the subspace errors from ULVD subspace

73

tracking. The value sin(0) is one that is bounded by our error analysis. We plot-

ted log (s'm(6.)),i = 1,2 in solid and dotted lines, respectively, in the vertical axis of

the second graph. It turned out that log (sin(0)) was almost indistinguishable from

log (sin(0)), so we did not plot it. sin(0) is the approximation error discussed by

Fierro and Hansen [43].

Finally, the TLS errors

(SVD)_x(ULVD)|

~ ||(SVD)| M j i

are given in logarithm in the last plot. Here, x\ ' and x\ ', are the TLS solutions

using the SVD and the ULVD, respectively.

For our condition estimators, we use the LINPACK condition estimator to approx-

imate the left singular vector that corresponds to the smallest singular value, followed by

inverse iteration using this approximate singular vector as the initial vector. The tests

show that up to three steps of inverse iterations suffice the accuracy of the approximate

smallest singular value required by the algorithm.

EXAMPLE 4.1. A, a 110-by-6 random matrix, b, a 110-by-l random vector. Entries of A

and b were chosen from a uniform distribution on the interval (0,1). 85 randomly chosen

rows of (A; b) were multiplied by 7 = 10 in order to vary the rank of the matrix, and

_2
tol = 10 . The window size p used was 12.

EXAMPLE 4.2. Same as Example 4.1 except that 7 = 10 and tol = 10

4
EXAMPLE 4.3. Same as Example 4.1 except that the matrix had an outlier of size 10

at (18,1) position.

74

The first plot shows that our algorithm estimated the numerical ranks correctly

throughout the sliding window steps in spite of frequent rank changes. Although the

errors in tiny singular values were relatively large, and the small singular values were

almost always overestimated, they were close enough to correctly estimate the rank. Thus

the rank estimates from our algorithm and those by the Jacobi SVD were identical. As

expected, the errors in the TLS solution r. are almost exactly the same as the size of

sin(0)in (4.34).

The second plot in each figure shows that the noise subspace error is very small

giving accurate TLS solutions. The quantities in (4.34) are shown to be essentially

identical indicating that the subspace errors from our algorithm are from the rounding

errors, not approximation errors. We note that the Example 4.1 has greater error in the

noise subspace than Example 4.2.

This is probably because Example 4.1 has only a small relative gap in the spectrum

—5 —8
around 7 = 10 but a large relative gap around 7 = 10 . However, for all of our

examples, the approximation to the subspaces by the ULVD is very good. Since the error

bounds on the distance between the noise subspaces depend on the (k + l)-st singular

value, the approximated singular subspace gets better as 7 decreases as shown in Fig.

4.3-4.4.

The TLS solution errors behave very much the same as the noise subspace errors.

From (2.18)-(2.19) it is not difficult to see that the TLS errors differ from the noise

subspace errors only by a constant factor.

Moreover, the algorithm performs well even when G becomes singular (indicated

by '*' in the first plot). We tested several other examples, and these results were typical.

Since our downdating procedures use the LINPACK downdating algorithm, it is

not difficult to generate the cases where the algorithm breaks down when ||a|| > 1, for

instance, when deleting a row that contains outliers. In this case, we first refine the

75

decomposition [100, 104], that is, compute an orthogonal matrix U such that

U
'i ^

F G

'i ^
0 G

(4.35)

If it is still true that ||a|| > 1 even after the refinement, where L a = x, the

corrected semi-normal equation (CSNE) approach [18] (indicated by '+' in the first

plot) is used for computing a with higher accuracy. It is essentially the same as that

used by Park and Eiden [87] and is given by

Ly = a, t = el- X.V^

L 6a = V, X. t, a — a + 6a
1 3

L6y = 6a, t = t-X V 6y, a = ||i||

T (T\ where X. = Ir A. 1, the j-th window matrix augmented with the row being deleted.

Finally, restore the lower triangular form, that is, compute an orthogonal V such that

<i ^

F G

tl i,\
0 G

V. (4.36)

The CSNE approach was used in all three examples and most extensively in

Example 4.3 when downdating a row with an outlier. However, the performance of

our algorithm was less satisfactory for larger outliers. This is consistent with our error

analysis, since for a very large outlier we would have u in (4.26) very large.

2
The refinement steps in (4.35)-(4.36) require k (n - k) Givens rotations, so that

they become impractical when k = ö(n^) or larger. As an alternative, we solve for a

from the equation

by solving

LTFT a — z

76

(4.37)

mm
*N

L a = z
B m

1 -L~TFT ^
aN +

(\
a „

B

\ ° /

(4.38)

(4.39)

Then, we see that

a =
/ T-TJ?T \ aB-L F aN

\ "N I

(4.40)

is the minimum length solution to (4.37). (4.38) requires 0(k) back substitution,

and (4.39) can be approximated by a few steps of Lanczos algorithm since it is well-

conditioned.

Table 4.1. Tracking ||P|| and ||G|L for the ULVD Procedure
F F

Steps Updating Formula Flops

2 II^IIJ.=II^HJ. - ii/;i}n2 0{k)

0(1)

5 \\F(% = \\F(YF + \\gf)\\2-\\9(*Y
iic(4)ii2F = iiG(3)ii2F-ibi3)n2+iiff;

4)ii2

0(p - k)

0(1)

77

Moreover, to prevent a from becoming too large, we track ||F|| „ so that it remains

under certain threshold, say, \\L \\ \\F\\ < 0.01. This is similar to recommendations

made by Fierro and Bunch [41, 42]. Only steps in Algorithm 4.1 that require to update

\\F\\p are Steps 2 and 5. Table 4.1 shows how to update these quantities. Here, g^1'

(i) denotes the first column of GK ,i= 1,3,4.

78

Rank Estimates
10

0

* **' *** 1 *** * ** **** *****

+ +
** *** ***** 1 * 1

\ "Y_
i

./"VA r- A,r\A v V
1 1

V

1 1

0 10 20 30 40 50 60 70 80 90 100

-5

■10

■15h

Noise Space Errors
-i 1 1 1—

■20 J I L l l l

0 10 20 30 40 50 60 70 80 90 100

TLS Solution Errors

■10

■15

-20

^A

J L J L

0 10 20 30 40 50 60 70 80 90 100

Fig. 4.3. Example 4.1

79

Rank Estimates
10

0

******* ******* ***

+
1 ** ' *' *** ' *r

J I I I

0 10 20 30 40 50 60 70 80 90 100

Noise Space Errors

TLS Solution Errors
•12 i i r i i r

■16 J L I i i i

0 10 20 30 40 50 60 70 80 90 100

Fig. 4.4. Example 4.2

80

10
Rank Estimates

* * ** ** * *** * * * * ***********

+ + +

Ql I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100

■5

-10-

•15-

-20

Noise Space Errors
1 1 i 1

• *\

1 1 1 1 1
fVfy

'mi •
<r~F-r

1 '

i'

•J II

II
1 I1 1

1 1 ' 1

1 -

1

i i 1 1

1

1

'j' —'

1 1 1 1

■

0 10 20 30 40 50 60 70 80 90 100

TLS Solution Errors
i \ i i r

■15

■20 J I I I I I 1 I

0 10 20 30 40 50 60 70 80 90 100

Fig. 4.5. Example 4.3

81

Chapter 5

Rank Detection for Modifying the ULV Decomposition

5.1 Introduction

In Algorithm 4.1 the deflation steps are required to compute the numerical rank

after a downdate. The deflation step usually involves some condition estimator, which

can be a nuisance in some situations such as in parallel implementation. A survey of

2
popular condition estimators is given in [61], and they all require ö(k) flops, so that

2 the entire process requires ö(k) flops, where k is the dimension of L in (4.2). With

some modification to Algorithm 4.1 we can often eliminate Step 7, the deflation step.

Furthermore, the modified algorithm offers an efficient way of tracking exact quan-

tities of \\L || „, \\F\\ „, and ||G|| „, which give a significant information on the condition

of the downdating problem. The experiments show that the computed subspaces are as

good as can be expected, and no worse than those demonstrated in the previous chapter.

The updating algorithm for the ULVD can be also implemented similarly with a slight

modification to the downdating algorithm.

We propose our new ULVD updating/downdating algorithm in Section 5.2. Sec-

tion 5.3 contains the rank detection method related to the new algorithm. In Section

5.4, we give numerical tests of our algorithm on the RTLS problems.

82

5.2 New Algorithm for ULVD Downdating

Our new algorithm reduces the downdating problem to a 2 x 2 downdating prob-

T T lern. As in Algorithm 4.1, we assume that L L — xx is positive definite, and U is not

accumulated.

ALGORITHM 5.1 (NEW PROCEDURE FOR ULVD DOWNDATING). Assume the terminol-

ogy of Algorithm 4.1, and denote also that r*£ = e^ [lA ']e^.

Step 1. Construct orthogonal matrices Ü , V^ G U * and Ü^V^ G V}p~ 'X^p~ '

such that

L{1) = üfLVv V^x = (ek, {=\\x\

G(1) = Ü^GVr Vfy = pev p = \\y\\

(5.1)

(5.2)

Also, compute

f(1) = Ü^FVV

Update V - Üdiag(Ü1,/n_jb) diag^,^,^).

Step 2. Find an orthogonal matrix U G TZK ' such that

(i<2> h \ -T / i*
1) 0 ^

I (f(1))T c(1) I V u\ ' 9n I

(5.3)

Define F{2) = (I- e^F^.

83

Step 3. Write

I^ =

k-1 1

/ xf) o ^
r (2)iT ,(2)
& } lkk

k-1

1

kxk and find an orthogonal matrix U £lZ such that

(3)

\ ° fkl
oTiP\ 4 (5.4)

(I) -T Compute also hr ' — U h.

Step 4. Use Algorithm 3.9 for 2 x 2 downdating:

e«i=^»2<,4'>,ev2>

where we solve

0 g (2)
\ v yll / V^/

(5.5)

and set

ßx=ßv ß2 = mm{ß2,Jl-ßl} (5.6)

kxk Step 5. Find an orthogonal matrix V G 72. such that

L^ =
I r(5)

/ (5)XT ,(5)
= L<%.

ikik /

(5.7)

where L^ ' and L, ' differ only on the (k, k) entry. Also, compute

^(3) - FV)v

Update V<-Vdiag(V3,In_k).

(k+l)x(k+l)
Step 6. Find an orthogonal matrix V' £ TV- ' v ; such that

84

(£<6> 0) = (I<5> hP^)?4

(F(4) G(4)) = (i,(3) G(3))diag(y4,/^_i).

(5.8)

(5.9)

Update V <- V diag(F4,/ri_ifc_1). If ^ ^ 0, then

C =

L 0 0 (z<6> 0 0

F G 0 = F(4) G(4) 0

0 0 0 0 0 0

and skip Step 7.

,(4) f(4)_ (3) Step 7. If g Y = 0 then /j ; = 0 also since it was formed from gK ' using V . Thus

'l o ^

p—k

0

F(4) G(4)
0 0

;(4) F Gv

/

l

p-k-l

85

~(4)
where Gu is a lower Hessenberg matrix. We then find an orthogonal matrix

V. € n(p~^X(p~k^ and an orthogonal permutation matrix Ü, G ft^-^*^-^
o 5

such that

0y\=
/ -

G 0

0 0

p-k-1

1

Update V «- Vdiag(J,,V.,I)• Thus,
K O ft—p

k p-k-1 n-p+1

C =

L 0 0 k

F G 0 p-k-1

0 0 0 , n-p+1

Step 8. Update the numerical rank of L, and make appropriate adjustments to F

and G (a procedure for the rank detection will be described in the next section).

2 2 Algorithm 5.1 requires 12k + 6(p - k) + 24k(p — k) + 0(p) flops for Steps 1-6 and

2
4k + O(k) flops for Step 7. When V is modified, additional 6np + \2nk flops will be

required. Fig. 5.1-5.2 depict the reduction steps for Algorithm 5.1. As in Algorithm

4.1, a set of —► denotes the downdating Step 4, and Step 7 is illustrated in Fig. 4.2.

REMARK 5.1. Note that in (5.5)-(5.6) we incorporate "additive noise" to compute a as

similarly done in Step 4 of Algorithm 4.1. As shown in Chapter 4, the algorithm can be

made consistent with this additive noise in the absence of rounding error. Proposition

4.2 shows this important consistency property.

REMARK 5.2. Algorithm 5.1 has a few advantages over Algorithm 4.1. Algorithm 5.1

does not incorporate the deflation process to estimate the numerical rank as often as

'

86

4 1 i I I i i I

(*
X x y y y\ /o X X y y o\ I 0 x x y y o\

I —» / T I
I I -► / i I I
I I I / i I I I I

f f f g / f f 9 f f f 9
f f f 9 9 -¥ / f f 9 9 9 f f f 9 9

\/ f f 9 9 g) -* \/ f f 9 9 a) \f f f 9 9 91

/° 0 e p o °\ /° 0 $ p 0 °\ /0 0 £ P o 0\
l / /

_► I / T I ; -+ / /
— I / / -* I ; / / / / 9
-* f / f 9 9 —+ f / / 9 -* / / o 9
->• f / f 9 9 f / / 9 9 f f f 9 9

\/ / f 9 9 a) \/ / / 9 9 9l \f f / 9 9 9/

(o 0 t P o o\ /o 0 t P 0 °\ /0 0 £ P o 0\
-+ l / 9 —* I 9

I / 9 -* / / 9 I I I 9
l / I 9 -* / 7 I 9 -♦ T o / 9

-> f 0 0 9 0 0 0 9 0 0 0 9
f / f 9 9 / / / 9 9 f f f 9 9 u / f 9 9 9/ \/ / / 9 9 9) \f f f 9 9 9/

l 0 0 e P 0 °\
/ 9
/ / / 9
0 0 / 9
0 0 0 9
/ / / 9 9

\f / / 9 9 9/

Fig . 5.1. Improve dR .edu ctio n S tep IS 1 -3 for Downdating the ULVE)

87

i i i I
/O 0 0 0 0 0\ / x x x y y y\ t x X x y y

/ I g I I 9 \ g
/ / l 9 1 I I g \ I T g
0 0 l 9 0 0 / g l 0 i g
0 0 0 9 0 0 0 g 0 0 o g
/ / f 9 9 f f f 9 9 / / f g g

\/ / f 9 9 9/ \f f f 9 9 9/ \f / f g g

i I i i i i
IX X x y y y\ t x x x y y y\ /x X x y y

\ 9 I /
I I 9 I I 9 / /
I I I 9 1 I I g / / I g
0 0 0 9 f 0 0 g / / o a
/ / f 9 9 f f f 9 9 / / f g g

\/ / f 9 9 9/ \f f f 9 9 gl \f / f g g

/ x x x y
I

y y\

I I
I I I
f f f 9
f f f 9 9

\S f f 9 g gl

9/

Fig. 5.2. Improved Reduction Steps 4-6 for Downdating the ULVD

Algorithm 4.1. It turns out that after a downdate, Z,,, the (k,k) entry of X often gives

a very good approximation to a . (X). Steps 3 and 5 offer this benefit with some extra

work, namely, 2 (k — 1) Givens rotations.

REMARK 5.3. The algorithm can be also used for updating the ULVD just by replacing

Step 4 with the Algorithm 3.8, which requires only 12 flops.

5.3 Rank Detection

5.3.1 Bounding ||X_1||

In this section, we show that in Step 8 we can often determine the numerical rank

of A without the deflation process. We start with stating a simple lemma that bounds

the 2-norm of a block matrix in terms of 2-norms of its blocks.

LEMMA 5.1 ([9, LEMMA 3.3]). Let M and M be the sx s block matrices,

M =

Mu Mu ... Mu

\Msl Ms2 ••• MssJ

, M =

\\Mn\\ \\MU\\ ... \\MU\\

VUMJ WMs2\ \\M
ss" I

Then \\M\\ < \\M\\.

Proof. See the proof in [9]. D

In fact, Lemma 5.1 holds for any consistent norms. A straightforward application of this

lemma results in the following lemma.

LEMMA 5.2. Let

89

L =

v 1

Lu w

0 7
(5.10)

where L is nonsingular and 7^0. Then,

l|£_1||<
' \\L-*\\ 7-1||i-^||N

-1
V

(5.11)

Proof. It is easy to verify that

X"! =

I °

-1,-1 \ -7 in tir

-1
(5.12)

Then taking norms and using Lemma 5.1 yield (5.11). D

(i)
The following lemma shows the effect of Steps 3 and 5 of Algorithm 5.1 on r,',

(k,k) entry of X^,i = 2,4.

LEMMA 5.3. Let L be defined in (5.10). Suppose

L =
w 7

= LQ (5.13)

where Q is orthogonal. Then,

~-l -1,. , MI--1 ,,2,1/2
7 =7 (1 + ||X,n w||) . (5.14)

Proof. From (5.13) we see that

90

r1 ?-i
'11 0

_-l_Tr-l —1
-7 w Ln 7

g^-1

i. . where the expression for L is given in (5.12). Thus we have

~—T~—1 —T —1

Comparing both sides yields (5.14). D

Combining Lemma 5.2 and 5.3 gives the following result.

LEMMA 5.4. Assume the hypothesis of Lemma 5.3. Then

iL-'w^^wL-^ir1,!-1), (5.15)

where

ip(x,y,z)
1,2, 2, , 1 I. 2 . 2,2 ~T1
-{x +y)+-\/(x +y) -4x z (5.16)

Proof. It is easy to show that for any 2x2 upper triangular matrix,

5 =
' a b »

\° C/

91

we have

°\{S) = i(a2 + b2 + c2) + ly/(a
2 + b2 + c2)2-4a2c2. (5.17)

— 1 —1 —1 —1 2 2 Let a = ||i ||, b = -7 ||2/ tu||, c = 7 . Then by Lemma 5.3, we see that b +c =

—2 —1 7 , and by Lemma 5.2, ||X || < cr (5). Hence, taking a square root in (5.17) proves

the lemma. D

The following lemma states necessary conditions to ensure a correct rank estima-

tion for the ULVD.

LEMMA 5.5. Let C be defined in (4-2), and let 77 = ||.FZ ||. Suppose

\L 1\\<tol X, \\G\\(l + T))<tol, 77 <1. (5.18)

Then,

ck{C) > tol > <rk+1(C). (5.19)

Proof. By singular value interlacing property [63, Theorem 7.3.9], it is easy to

show that

ffkW * ffmin^ = II1"1«"1' WC) * CTl(G) = INI' (5-2°)

Thus,

ak(C) > tol > taJ. _L_ > \\G\\ > *k+1(C).

This proves the lemma. D

Thus, the decomposition always remains rank-revealing as long as the conditions

in (5.18) are satisfied. Note that these conditions are not enforceable unless there is a

92

reasonable gap in the spectrum, but the conditions for its existence are weaker than the

RRQR conditions of Hong and Pan [62].

A cluster of singular values around tol would cause one of the conditions in (5.18)

to be violated, and the rank to be underestimated. Since we keep tracking \\F\\ and

\\G\\„ automatically as a part of the algorithm as illustrated in Section 5.3.3, we will

always know when this happens.

The quantities in the above lemma cannot be tracked efficiently using our algo-

rithm. However, some good bounds can be tracked. That leads to the following theorem

that uses only computed quantities.

THEOREM 5.1. Consider the downdating procedure in Algorithm 5.1 and the related up-

dating procedure given by Remark 3.5. Let C be the matrix before updating (downdating)

and partitioned as in (4-2), and let L have the condition estimate K « \\L \\ such

that

ak{C) >K>tol> o-k+1(C).

Let C be the matrix after updating (downdating) and partitioned according to

s p—s n—p

C =

L 0 0 s

F G 0 P-s ,

0 0 0 ;
n—p

(5.21)

where s = k + 1 for updating and s = k for downdating. Define

R-l = ^-\\iss\-\\issr
l) (5.22)

where i()(x,y,z) is the function defined in (5.16).

U

(i) R > tol

93

(ii) \\F\\jK = fj<l

1/ (iii) ||<5||„ <x>/(i + >j) 1

then

<Ts(C)>t0l><Ts+1tC). (5.23)

//

(iv) K > tol

(v) K-
1
J\\F\\

2
F + ||e^X||2 - \\Fef = rj < 1

M\/\\G\\2F + \\Fe/ + \ls/<tol(l + rj) l

then

Vi(^) ^td ^ <%(<?)• (5.24)

Proof. Using the fact that for any matrix A, \\A\\ < \\A\\ , it is simple to show that

the conditions (i)-(iii) satisfy the hypothesis of Lemma 5.5. Thus, (5.23) immediately

follows.

Let

s-l p-s+1 n-p

c =

L 0 0 s-l

F G 0 p-s+1 ,

0 0 0 , n— p

where

94

L =

F =

s-\ i

L 0

-T 7 W I
ss

s-1

(-T\ w

\F I

, w = L e

• F=[F f. iF /.)• A" Fe

G =

1 P-*

55 1

p—S

Then, it is simple to verify that

\\nl = \\F\\l + \H\2-\\ff

I2, licii2r = ml + »//+iy2

Again, the conditions (v)-(vi) ensure that ||.F||n, and ||ö||„ satisfy the hypothesis of

Lemma 5.5. Hence, (5.24) also follows. D

The conditions (iii) and (vi) make certain that there exists a reasonable gap in the

spectrum. When the conditions (i)-(iii) are satisfied, updating results in a rank increase.

Similarly, when the conditions (iv)-(vi) are met, downdating results in a rank decrease.

From the theorem we see the importance of keeping ||F|| as small as possible. Several

ways to do this are proposed in [41, 42, 104].

95

The theorem still holds even if K is replaced by n K \\L~ || in (5.22). We can

explicitly compute \\L \\„ in ö{n) flops as described in the following section. In some

cases, this may be a more pessimistic bound than the one in Theorem 5.1.

We should note that there is still a possibility that R could be any underestimate

of er, (Z). Thus, if the conditions of this theorem are not satisfied, then the condition of

X will still have to be estimated. When the conditions (iii) or (vi) are violated, indicating

that there exists little gap between them, one must refactor or redefine tol. If none of

these work, one can conclude that the ULVD may not be suitable for tracking subspaces

for the problem under consideration.

One of the factors that might affect the rank estimation using this scheme is

incorrect rank estimate from the previous update/downdate. This problem, however,

can be solved by computing the initial factorization using the SVD for an accurate rank

estimation. Although the SVD is more expensive to compute than the ULVD, the cost

will become negligible when amortized over the cost at the subsequent updating and

downdating steps.

Next two sections will show how to track efficiently the quantities, \\L~ || „, \\F\\ _,

and ||G||F.

5.3.2 Tracking ||X_1||F

We begin with the following lemma.

LEMMA 5.6. Assume the hypothesis and terminology of Lemma 5.3. Then,

\L-% = \\L~ltF^\ (5.25)
7

96

Proof, From (5.12) we see that

\\L-YF=\\L-X^-±M^1-

Then, (5.25) follows directly from Lemma 5.3. D

Because of orthogonal invariance of || ■ || „ we observe that

||{x(V1llF = l|i"1lljP

\\{L{3YX = \\{L{2)r%

ii{^(5)r1iiir = ii{^(4)r1iijp

where we used the terminology of Algorithm 5.1. Thus, the steps in Algorithm 5.1 that

we need to consider updating \\L || „ are Steps 2, 4, and 6. The following lemmata give

the formula for each step.

LEMMA 5.7. Assume the terminology of Algorithm 5.1. Then

n(3)i2 ,.(4),2

V3¥5)
(5.26)

Proof. Since

IK^WF =

ii^Viil =

(z) _, 2 i + ||{z3)rV3)||2

H<4l> X+ 3)2 ~ 11 F {fir

(3) _j 2 1 + ||{Z(^}-V3)||2

ll^?> «F+ fc
t'ifcib '

(5.27)

(5.28)

we see that

97

\\{L
(4) -l 2 m -l 2 i + IK^rV^II2

<©2

+
i + IK^'rW

(5.29)

By Lemma 5.3 we obtain

i + IK^rV3'!!2
1

oil')2 €>2'
(5.30)

Substituting (5.30) into (5.29) yields the result. D

Since P* is not available at Step 4, and \\{I, '} \\F = \\{L } || F, we update

this at Step 5.

LEMMA 5.8. Assume the terminology of Algorithm 5.1. Then

\\{L{2)y% = \\{L{l)rl\\l-

\\{L
{6)

}-% = ii{£(5)rYP-

\\c\y
F {,g>>2

F {tf?

(5.31)

(5.32)

w/iere I(2)c = h, and {L^fd = /j4).

Proo/. Let

£(!) =
-(I) \

L& =
(2)

0 9 (2)
11

= W»

98

Then we obtain

|,{£<VYF = iK^Vll2^ +"{ (1 2
A " (5.33)

WiWrX = ll^r1!!^1411^1*1'2 (5-34)
F {9\\T

By orthogonal invariance, we see that \\{Ir '} 11* = \\{L } Hen so that

l|{^(2)} % = ll^(1)} % + —~ m 2
l (5-35)

l+ii^W
<*{?>'

By Lemma 5.3, we see that

i + IKi'"}-^"!!2

toil')2 <»S?>2'
(5.36)

Substituting (5.36) into (5.35) yields (5.31). The proof of (5.32) is similar. D

Computing ||{X(2)}_1||F and ||{X(6)}_1||F requires 0{k2) flops for forward and

backward substitutions, respectively, and ||{lA '} ||„, 0(1) flops.

Finally, when there is a rank change in Step 8, we use the relation,

—i2 —i2 i+iitf^ir,1!!2

99

where

L =
w I

(5.37)

kk I

Thus, it takes ö(k) back substitution.

All of these formulae also work for updating as well as downdating for obvious

reasons. Updating and downdating procedures differ only on Step 4 when updating and

downdating 2x2 matrices. Thus, r' is computed in two different ways. Therefore, the

formula (5.26) can be also used with the updating procedure.

5.3.3 Tracking ||.F||F and \\G\\F

For completeness we show how to update the \\F\\„ and \\G\\„ in Table 5.1 al-

though it was partially described in [13]. Here, we denote gy = [G^]e , i = 3,4. Note

here that having calculated ||<^ '|| and ||$r '|| to compute \\F^ ^||„, computing \\G^ '\\F

only requires 0(1) flops. As in tracking \\L ||„, all of the formulae in Table 5.1 also

work for updating as well as downdating.

Table 5.1. Tracking IIFIL and NGN for the Improved ULVD Procedure
F F

Steps Updating Formula Flops

2 11^ = 11^ HI/!'Y
\\G(x=\\^]t-{&^{9(y

O(k)

0(1)

4 ii^ii;=ii^n't-{^+{5|:r 0(1)

6 \\FX=\\F(X+K^-K^
iiG(4)iii=iiG(3)iii-ib!3)ii2+ii5!4)ii2

0(p - k)

O(l)

100

5.4 Numerical Examples

In this section, we present a few examples from numerical experiments. These

tests were performed using MATLAB on a SPARCstation 5 in IEEE Standard double

1 R
precision with machine precision «10 .As in Chapter 4 the algorithm employs the

sliding window technique from signal processing.

At each step of the sliding window method with the window size m , an m x n

data matrix is constructed from anmxn observation matrix A by adding a new row to

the data matrix in the previous window and deleting the oldest row from it. In step j,

the row rn + j of the observation matrix is added and the row j is deleted, giving the

data matrix A.. The ULVD of the initial window matrix A., which consists of the first
3 0'

m rows of A, can be obtained by computing its SVD.

Then Algorithm 5.1 takes the lower triangular matrix (middle part of the decom-

position), the orthogonal matrix (right part) as initial input and the modifying vector

T r, and successively modifies these matrices at every window step. The vector z = V r

is computed at the beginning of each window step.

We tested our algorithms in the context of the total least squares (TLS) problems.

See Section 2.7 for details. We use the TLS solutions from the Jacobi SVD as reference

in checking the accuracy of the solution and rank estimates of our algorithms.

Fig. 5.3-5.5 show the rank estimates by Algorithms 4.1 and 5.1. The horizontal

axis represents the window steps and the vertical axis the numerical rank of the window

matrix.

The distance between the subspaces is given in the next plot using the Definition

2.3. Let

A. = Y.Z.WT, W. = (W., W..)
3 3 3 3 J Jl J2y

101

be the SVD of A. computed by the one-sided Jacobi method at step j. Let

A. = U®C®{V®f, V® = (V® V®), i=l,2
3 3 3 3 3 3^ 3^

be the ULVD of A. computed by Algorithms 4.1 and 5.1, respectively.

(i) Note that here we are discarding U) , i = 1,2. Finally, let

C® = ?®2W{W®f, W® = (W® W®), t = l,2
3 3 3 3 3 v Jl J2 "

(i) — by the SVD of C\ ' computed by the one-sided Jacobi method. Define W. by

w® = (w® fy(i)) = vW\ i = 1,2.
3 K j\ j2 ' 3 3

Define the angles between the subspaces

sin Of =|l {Wfv II, sin öW =|l {^j?}^ II' i = 1'2- <5-38)

The angles 0., Z = 1,2 represent, respectively, error between the true noise subspace from

the Jacobi SVD and the approximate one from tracking the ULVD, the approximation

error from the ULV decomposition, and the subspace errors from ULV subspace tracking.

We plotted log (sin 0^ ')indashed-dot,log (sin0| ') in solid, and log (sin0^ ')

in dotted line on the vertical axis of the second graph, sin 6). ' is the approximation

errors discussed by Fierro and Hansen [43].

102

Finally, the TLS errors

(SVD) _ ^ULVD).

C«'=" ||xf™)|| "' i=I'2

are given in logarithm in the last plot. Here, ar ' and x\ ', i = 1,2 are the TLS

solutions using the SVD and the ULVD with Algorithms 4.1 and 5.1, respectively. On

the third graph of each figure we plotted C in solid and Q in dashed-dot.

The following examples were also used in [13].

EXAMPLE 5.1. A, a 110-by-6 random matrix, 6, a 110-by-l random vector. Entries of A

and b were chosen from a uniform distribution on the interval (0,1). 85 randomly chosen

—4
rows of (A; b) were multiplied by 7 = 10 in order to vary the rank of the matrix, and

_2
tol — 10 . The window size p used was 12.

EXAMPLE 5.2. Same as Example 1 except that 7 = 10 and tol — 10

EXAMPLE 5.3. Same as Example 1 except that the matrix had an outlier of size 10 at

(18,1) position.

The first plot shows that both algorithms estimated the numerical ranks correctly

throughout the sliding window steps in spite of frequent rank changes. Thus the rank

estimates from both algorithms and those by the Jacobi SVD were identical. As expected,

(i)
the errors in the TLS solution are almost exactly the same as the size of sin 6K. , i = 1,2

in (5.38).

The second plot in each figure shows that the noise subspace error is very small

giving accurate TLS solutions. The quantities in (5.38) are shown to be essentially

identical indicating that the subspace errors from our algorithm are from the rounding

errors, not approximation errors.

103

Moreover, both algorithms perform well even when G becomes singular (indicated

by '*' for Algorithm 4.1 and '~' for Algorithm 5.1 in the first plot). We tested several

other examples, and these results were typical.

As in [13] we used the Corrected Seminormal Equation (CSNE) technique when-

2 2 ever the downdating is not possible, namely, ||a|| > 1 in (4.5), and ß + ß > 1 in (5.6).

We indicated the time steps where the CSNE was used with '+' for Algorithm 4.1 and

'#' for Algorithm 5.1.

For Example 1, we plotted the norm estimates by Algorithm 5.1: ||Z~ || computed

by the SVD (in solid), R of Theorem 5.1 (in solid dot), and \\L || computed by the

Algorithm 5.1 as described in section 5.3.2 (dotted), again on a log scale, relative to tol.

This verifies the bound from Theorem 5.1.

104

10

5

0

1 1 ****** |*tt*t* **11* 51*3 ***|** I * I *** Ep T
+ +

V'
J I

0 10 20 30 40 50 60 70 80 90 100

Noise Space Errors
i 1 j~.—i—TJ~7~U.

0 10 20 30 40 50 60 70 80 90 100

■5

•10

•15

TLS Solution Errors

^ ' i 'c\ '_. .'■' ."'^•-•^.~. ' _! .

0 10 20 30 40 50 60 70 80 90 100

Norm Estimates

0 10 20 30 40 50 60 70 80 90 100

Fig. 5.3. Example 5.1

105

Rank Estimates
10 ***** ***** ***

+ +
M AM AAM AW

i r

0

*** *** **** *■

A M AWA A A A A AMA

J | | | L J I L

0 10 20 30 40 50 60 70 80 90 100

-12

■14

i r

Noise Space Errors
n 1 1-

■16 J 1 I I L J I

0 10 20 30 40 50 60 70 80 90 100

TLS Solution Errors

■16 j i i i i i i i i

0 10 20 30 40 50 60 70 80 90 100

Fig. 5.4. Example 5.2

106

Rank Estimates
10

0

+ +

1 #

1 1

im mm »MMHH

WTWm nnlutii

1 1 1 1 i i i

0 10 20 30 40 50 60 70 80 90 100

Noise Space Errors
0i 1 r i r

10 20 30 40 50 60 70 80 90 100

"i r

TLS Solution Errors
-1 1 1 1 1 r

•10 J I I I

0 10 20 30 40 50 60 70 90 100

Fig. 5.5. Example 5.3

107

Chapter 6

Modifying the Singular Value Decomposition

6.1 Introduction

We discuss methods for updating and downdating the SVD and partial SVD of

A € 11 of the form (1.2) and (1.3). Throughout this chapter we use B in place of

M in (1.1) to denote diagonal form or partially reduced bidiagonal form.

Unlike the Jacobi-type SVD updating procedures [79, 80, 81], we transform up-

dating/downdating problem into a problem of finding a bidiagonal matrix B and an

orthogonal matrix V such that

BTB ± zzT = VBTBVT (6.1)

where z is defined in 1.9). Throughout this chapter the bidiagonal matrix B has the

form

/
0 0

0

B =

Tj ^ 0
\

0 72 <f>2

0

0 0

7 „ <t> „ 0 'n-2 ^n-2

7„ i <t>
n i n—1 n—1

0 7 n)

108

We may also use the MATLAB-like shorthand

B = bidiag(7(l:n),<£(l:n- 1))

to denote the above bidiagonal matrix. As in modifying the ULVD from the previ-

ous chapters, our approaches to downdating the decompositions use ideas from chasing

algorithms [1, 93,115, 125] and from the downdating algorithm due to Saunders [46, 85].

The following are the main results of this chapter:

• Procedures for updating and downdating the SVD which obtain bidiagonal forms

such that

B

I n-l

I - T\
Bl 4>ffx \ I

o £„
V /

i.-i
\ B2 }

* W> (6.2)

where B and B are upper bidiagonal, and / = k + 1 for updating and / = k

for downdating. This form preserves more of the accuracy of the small singular

values and is not achieved by standard chasing procedures. We can then use one of

several algorithms to find the singular values of the bidiagonal matrix B to relative

accuracy [11, 35, 40]. The singular vector matrix can be modified by a procedure

due to Gu and Eisenstat[54] in 0(mn) operations (the constant on ran depends

upon machine precision). That is the same order of complexity as for the ULVD

methods with similar stability properties.

A perturbation theory for the singular subspaces from modified matrices and block-

wise error bounds for the above procedures.

109

The condition (6.2) is achieved because the algorithms for both updating and

downdating problems produce an orthogonal matrix V that has the form

V =

k n—k

k
(6.3)

n—k

There is never a rotation of the first k columns of B with the last n-k.

In the following section we describe the secular equation approach as an alterna-

tive to chasing algorithm. We show that this approach can fail to separate the singular

values in separate blocks. In Section 6.3 we give some basic chasing procedures for

modifying the SVD, and our chasing procedures which have the property (6.2). Section

6.4 gives the perturbation theory and discusses error analysis. Section 6.5 gives some

computational examples.

6.2 Secular Equation Approach

The alternative to chasing algorithms for modifying the SVD is that of finding

the zeroes of a particular spectral function [10, 25, 49, 53, 54, 67, 97],

/(ä) = l + a£^i-2=0 (6.4)

where a > 0 for updating and a < 0 for downdating, and ä is the singular value of the

modified matrix. The corresponding singular vector is given by

(BTB-ä2I)_1z

\\{BTB-ä2In) lz\\

110

Here, we assume that B is diagonal. That approach, as yet, does not allow us to separate

the singular values into separate blocks as shown in the following example.

EXAMPLE 6.1. Let

B =

1 0

0 1-10
-10

1 1-10
-10

QR decomposition B is given by B = QR where

Q =

/ -1 -1 -1 \ -7.0711-10 4.0825-10 -5.7735-10 *

0 -8.1650-10-1 -5.7735-10-1

-7.0711 • 10"1 -4.0825 • 10_1 5.7735 • 10_1

/ -11 \
-1.4142 -7.0711-10

R = 0

0

-1.2247-10

0

-10

The SVD of R is given by R = USV where

U =

-1.0000
-21 \ 4.3301-10 0

-4.3301-10 21 -1.0000

0

0

1.0000

S =

1.4142 0

0 1.2247-10

0 0

-10 V =
-5.0000 • 10

-11 \

5.0000-10 !1 1

Ill

Let

7.0711-10 l -4.0825-10 l -5.7735-10 l

U = QU = 3.5355-10 21 8.1650-10 l

,-1 -1

-5.7735 • 10

,-1 7.0711-10 4.0825-10 5.7735-10

It can be verified that B = USVT. Let

D = BTB

1.0000 0

0

1.0000

 20 —20
1.0000-10 1.0000-10

-20
1.0000 1.0000-10 1.0000

Then its engendecomposition is given by D - XDX where

X =

7.0711-10 * 7.0711-10 ! *

-1.0000 0

7.0711-10 l -7.0711-10 l

D =

0 0 0

0 2.0000 0

0 0 2.2204 10'
-16

-20,
Notice that both the small eigenvalue of D (should be about 1-10) and the subspaces

are wrong

112

6.3 Ordinary Chasing Algorithms

6.3.1 Basic Chasing Routines

In this section, we present an example of an orthogonal chasing scheme that

produces orthogonal matrices D,V £ 1Z such that

B = DTBV, VTz = pev p=\\z\\ (6.6)

where B is lower bidiagonal. For the 4x4 case, it is given in Fig. 6.1. Here r and x

denote possibly large elements and e and y denote small elements. See Algorithm 3.4

for the formal description.

In theory, this could be used to produce an updated or downdated bidiagonal

matrix very easily. We have

V1 (B1 B±zzI)V = B1 B± p*e e1 = B1 B

If J3 = bidiag(7(l:n),<?!>(l:n - 1)), then B = bidiag(7(l:n),<^l:n - 1)) is identical

^T _ 1^2 2
to B except that 7 = W7 — p . This is illustrated in the last rotation in Fig. 6.1,

denoted by a pair of —*•. For updating it is simply a Givens rotation. It should be

noted for downdating that the assumption I7 | > p is equivalent to the assumption that

T T . B B — zz is positive semi-definite.

Such a procedure shown in Fig. 6.1 does not preserve the separation of subspaces

for large and small singular values as accurately as we would like. Large elements can

get chased down into the lower part of the bidiagonal matrix B as shown in the following

example.

113

i i
(T \ (r

\x x y y)

(r ^ r
r r
e e e

\x x 0 O/

\
T T

T T T

e e
\p 0 0 0/

\

e e
e e

1 1

(T ^ r
r r ?

e e
\x x 0 0/

i I

(r ^ ^
r r f"

r r
e e

\p 0 0 0/

i 1

r r
e e
e e e

x x 0 0/

e
e e

\x x » 0/ V

i i
(r \ -» /r f

r —* r r
r r r r T

e e e e
\x x 0 0/

/
r
r r

r r
e e e

\p 0 0 0/

I 1

r r
r r f

r e

T T

r r
r r

\p 0 0 0/ \p 0 0 0/

r r
r r

r r
\p 0 0 0/ \0 0 0 0/

Fig. 6.1. Ordinary Chasing Procedure

114

EXAMPLE 6.2. Suppose we have

B = diag(0.2071,1.510 -10 3,8.081-10 4,6.383-10 4,5.184-10 7)

z = (7.964 • 10"3,8.012 • 10~3, -9.102 • 10~3, -2.821 • 10~3,1.607 • 10~2)T

After forchase is applied to

/ \
B

\Z)

(6.7)

we obtain B — bidiag(7(l: 5), <£(1:4)) where

7(1:5) =(7.864 -10 2,-5.357-10 2,-1.317-10 3,-7.283-10 4,-6.414-10 4)T

4>{l: 4) = (-0.1852,4.134 • 10~5, -4.030 • 10-4,8.115 • 10~5)T

Here 7(5) > tol, so that the smallest singular values may be overestimated. In fact, there

should be no rank increase as we will see in Example 6.3.

In the next section, we show that forchase and backchase procedures described

in Section 3.2.1 can be combined in a fashion that allow us to update or downdate the

SVD more accurately.

6.3.2 The Updating Algorithm

Let

B = diag(7(l:n)), 7j > • • • > 7fc > £ > Hk+1 > • ■ • > 7„-

115

We partition B into

B1 = diag(7(l: k)), B2 = diag(7(A; + 1: n)).

Let z be defined in (1.9). Then the following algorithm updates the diagonal matrix into

upper bidiagonal matrix.

ALGORITHM 6.1 (PROCEDURE FOR UPDATING DIAGONAL MATRIX). Given input 7(1: n)

that contains a.(A),i = 1,...,n and the update vector z, this procedure produces the
1

updated bidiagonal matrix B = bidiag(7(l:n),<£(l:n- 1)). We also input k the number

of singular values greater than tol.

_ _ i» y U — — (Ti—jt^ y (n Jf\
Step 1. Compute orthogonal matrices U,V G H and I/, V G fcv '

such that

^JB.V = B[1), V1x = p1e
(£\ Pl = \\x\ fv

-R(!) v „=„>"*) Ü;B2V2 = B^, V = ^2el ' ^2 = NI

(6.8)

(6.9)

where f?; ' is upper bidiagonal, and B). ' lower bidiagonal.
1 ~

Step 2. Let Q, = .7(1,3,0) and Q = .7(2,3,0) define Givens rotations for some

8.,i =1,2 such that
1

«
.(1)

P2 *?)
0 = 0 7(2)

'ik+1

(1) 0 0
Jb+1 1 \ /

116

that is, use Algorithm 3.8 for updating 2x2 matrix,

[W-21i-p^1,.°>C<',<>2>-

Thus if we let U = J(k, n + 1, OJ J{k + 1, n + 1,6J, then we have

(B® 4>{2)eeT\ -°1 9k k \

\

0 B,

0

(2)
2

0

/ n(l)

tf
(2)

T T
\p\ek p2e\ I

(n—k)x(n—k)
Step 3. Use Algorithm 3.6 to construct an orthogonal matrix U. € 7£v ; v ;

such that

B = 'MS '
\° B2/

h °
\

\° \l

where B is upper bidiagonal. Thus U and V are given by

D =

10 0

0 U 0

0 0 {/.

t/„

2 /

0 'IT 0
4

0 0 1

V =
vl °
0 V. 2 /

(6.10)

Note that after Step 1 the updating problem is reduced to a 2 x 2 problem. Step

3 is to restore the matrix to upper bidiagonal form, which is equivalent to a step of qd

procedure. The block diagonal form of V in (6.10) is highly significant. Any modification

117

of the subspaces associated with the first k singular values and the last n — k singular

values will be computed in the reduction of the bidiagonal matrix B.

Fig. 6.2-6.3 show the reduction steps for this algorithm with n = 7 and k = 4.

Here, a pair of -^ denotes the application of Givens rotations that corresponds to Step

2. Unlike the ordinary chasing algorithm, Algorithm 6.1 preserves the block structure

as illustrated in the following example.

EXAMPLE 6.3. When Algorithm 6.1 is applied to (6.7), we obtain

7(1:5)= (6.441-10 4,9.869-10 4,3.974-10 3,5.009-10 2,3.818-10 7)T

(j>(l: 4) = (1.054 • 10~4,7.309 • 10~4,0.1862, -4.444 • 10_8)T

keeping the separation of the large and small blocks, and so preserving the accuracy of

the tiny singular values.

6.3.3 The Downdating Algorithm

An immediate difference between the updating and downdating procedures is that

we write B in the form

B = d\zg(BvBrOn_p) (6.11)

where

B1 = diag(7(l:fc))= diag((T1,...,(Tjk),

B2 = diag(7(A; + l:p)) = diag(CTik+1,...,(Tp),

anc

<Tk>€>(Tk+v Vi = '" = CT« = 0'

118

1 1 1 1

r r

V? a; x x y y y yJ

11 11

\ (T T \

e e
e e

x x x y y

e
e e

\ x x x y y)

1111 11
IT r r

r r
\ -* (r T r

r r

e e
e e
et e

\ x x y

(r r
T T r

r T

7 T
e
e e

e e

\ (I T
T T T

e
e e
e" e e

x x y

\

IT T T

T T

\ (T T

r r r
T T

r

e

e e
e e

x y I \

1 1
\ /: r \ (r r

e e e
e e

/ \ x x y

1 1

\ lT r \

\

T T

T T T

T

e
e e

e e
x y I

T T

T

t
e e

e e
x y

r T r
T r

T

e
e e

e e
i y

r T

T T

r
e
e e

e e
x y

Fig. 6.2. Bidiagonal Reduction Steps for Modifying the SVD

119

(r r
r T

T T

T

e
e e

e e
x y

IT T

r r
r r

V
t
e e

e e

/r r
r r

r r
r r

e
e e

e e

(r r
r r

T T

T r
e e

e
e" e

/r T

r r
r T

r r
t e

e e

Fig. 6.3. 2x2 Updating/Downdating Steps and a qd Step

120

thus allowing for the possibility that some singular values are exactly zero. As in down-

dating the ULVD, we partition the vector z in the form,

T

(\
x

\yo/

k

p—k

n—p

Here, y is presumed to be the result of rounding errors and is ignored. However, if

\\y \\ > fi * a JA), then we should not downdate, we should refactor.

T Even when there are no zero singular values, and even though z = V r and r is

T T the first row of A in (1.1), B B — xx is positive semi-definite. However, occasionally,

T T even that is not the case. The usual way to test if B B — xx is positive semi-definite

is to solve

T B s = x. (6.12)

If ||s|| > 1, then we cannot downdate B. by a;. One possible remedy is to try to obtain

T T a better value for x = V A e . That can be done using the corrected semi-normal

equations (CSNE) [18, 20] as we have used for modifying the ULVD in Chapter 4.

If ||s|| > 77 where 7/ < 1, then solve

B c = s. (6.13)

It should be noted that c solves the least squares problem

min pVjC-Cj ||
c£ll

121

and its value can be improved by the iterative improvement steps

r = e1-AVlc (6.14)

6x = V^ATr (6.15)

T
B 6s = Sx (6.16)

s + 6s, x ■*- x + 6x (6-17)

At this point, if ||s|| > 1, we signal that downdating is not possible, and thus other options

should be considered, such as refactoring or choosing a higher threshold e. Otherwise,

the algorithm proceeds in a similar manner to Algorithm 6.1.

We now present the downdating algorithm.

ALGORITHM 6.2 (PROCEDURE FOR DOWNDATING DIAGONAL MATRIX). Given the input

7(1: n) that contains c.(A),i — 1,.. .,n and the update vector z of the form (4.3), this

procedure produces the downdated bidiagonal matrix B = bidiag(7(l:n),^>(l:n — 1)).

We also input k the number of singular values greater than tol. y is ignored unless

\\y0\\ > ß-

Step 1. If ||s|| > rj where s is defined in (6.12) and r? < 1, then solve (6.13)-(6.16)

for 6s and 6x. Update s and x as in (6.17). If ||s|| > 1 or \\yn\\ > tol m 100 * /x,

then quit and exit; otherwise, do Steps 2-4.

Step 2. Same as Step 1 of Algorithm 6.1.

Step 3. Compute

fll = W!)' a2 = min {V7*+l' V^°l} ' (6'18)

a = Jl - a\ - a2
2 (6.19)

122

We can then find two 3x3 Givens rotations Q. = J(l, i + 1,0.), i = 1,2 such that

Q,Q2

(\
a

\a2/

= e.

In that case we modify the fc-th and (k + l)-st rows of the matrix

/ (2) A2)

(2) 0 7

V "1

Jfc+1

*2 /

= «A

,(*)

0 7 (1)
ifc+1

0 0

where p = 7^ y 1 - a . This can be done by using Algorithm 3.9,
2 ~ 'Jb+1

if'• 42). TJSi'=ä°™2M1}< °. TO,. •,.«,)■

Thus if we let £/ = J(l, Jb + 2,0)TJ(1, k + 1,0)T, then we have

/ „(2) (2) T \ B n vi
B (2)

/ (1) \ ' B^> 0

= ui

\ P\ek p2e\ I

0 B

0

(2)

Step 4. Same as Step 3 of Algorithm 6.1.

,-1 We note that in (6.18) \a \ = \\B x\\ = \\s\\. Thus B can be downdated by x if and

only if \a | < 1. For Algorithm 6.2, we assume that is the case. If a = 0, but a ^ 0,

123

then 7^ = 0, whereas if a = a^ = 0, then */£' = <f>^> = 0. Fig. 6.2-6.3 show the

reduction steps for this algorithm with n = 7 and k = 4, but, this time, a pair of —»•

denotes the application of rotations of Saunders' algorithm that corresponds to Step 3.

Thus we have simple algorithms to perform either an update or downdate. The

downdating procedure has the following consistency property similar to Proposition 4.2.

PROPOSITION 6.1. Assume that Algorithm 6.2 is done in exact arithmetic, that U and

V in (4-1) are exactly orthogonal, that U = UU satisfies Ue — e , and that z — V r

~ ~T
is computed exactly. Also let V = VV and z = V r = p e,+ ^„e, . If

A + SA =
r + or

= u
B

vT,
\ Ä + SÄ J l°J

(6.20)

then

A + 6A0 =

T \

A + 6A
U

z

B

\ ° /

VT. (6.21)

Thus \\8AA\ = \\SA\\ < \\SA\\.

Proof. We have that

U1 AV

plek

B,

pel

^eJkel

B„

(6.22)

124

and

DJ
(
 ^

\0/

piek (P2
+ S^ei

v = B,

\

hekei
B„

(6.23)

/

Thus from (6.20), ||<Sr||2 = 6p"^ + 6p^. Using (6.23) and noting that Ue^ = e])we have

~T u1 z

\B I

I T \
T

V =

Ä + SA
(6.24)

T / -T\
Thus comparing (6.24) with (6.21), we have 6A = I 0 6A 1. The result immediately

follows. D

We note that Proposition 6.1 is merely a consistency property. What it says is

that approximation used in Step 3 of Algorithm 6.2 does not increase the error over that

caused by assuming that Ue — e .

6.3.4 Extensions to Partially Reduced Bidiagonal Forms

Algorithm 6.1 and 6.2 can be easily extended to the case where either B or B

is bidiagonal as long as they are decoupled. We need only modify Step 1 of Algorithm

6.1 and Step 2 of Algorithm 6.2. Van Huffel and Park [115] describe chasing algorithms

ikxifc
that given B. upper bidiagonal, produce orthogonal matrices U , V £TZ such that

V<¥r *f* = 'ie*

where B is upper bidiagonal.

Fig. 6.4 shows how such an algorithm would work on a 5 x 5 example. Thus,

using algorithms such as the zero-shift QR [35] or the qd algorithm [40], it is possible to

125

I i i i
(x X X i x N (0 x x X x\ /() X X 1 x ^ /o 0 x x x\

T r —+ T T r r r r T

r r -» f" r T r T -* r r
r r

r r
T T

T r
r r

T T

~* f" r r
r T

\ '/ V '/ V rj \ 'J
i 1 I i

/O 0 X X 2^ /O 0 0 x x\ /O 0 0 x x\ /O 0 0 x x\
r T T T T T T -+ T T r T r r r

T T T T T -* r r T r r T r
T r

r r
~* T r

r T r
r r

T T

r r
T r

\ r/ \ '•/ \ T) \ r)

1 i i i
/O 0 0 i xN /o 0 0 0 x\ /O 0 0 0 x\ ^0 0 0 0 x\

r r r T T T r r r T r r
T T T T r r r -*■ T r r f r r r

T T

r r _+
r T

T

r
r

~* T r r
r T

f" r T T

T T

\ rj -*\ r »■/ V r) \ • r/

I I i i
/0 0 0 0 x\ /O 0 0 0 x\ /O 0 0 0 x> f° 0 0 0 x\

r r T T T T -» r r r r r r r
T T T

T T T

T T

T T T

T T

f r r

r r
r

T

T

T T

r r T T

T r
T T

V
i i

»7 V T J \
i 1

'J

/° 0 0 0 x\ /O 0 0 0 x\ /O 0 0 0 x> ^° 0 0 0 x\
T r T r r r -» T T r r r

—f

r r r
T T

T T

r r
r r r

r r

r r
T T

r r

r r r
T T

r T

V 7 \

0 0 0 x\

T J \ *)

r r
r r

r r
r r

\ T

Fig. 6;4. Reduction Steps for the Partially Reduced Bidiagonal Form

126

find the singular values that are below a certain threshold, and thus obtain a partially

bidiagonal matrix of the form (1.3).

6.4 Error Analysis

6.4.1 Error Bounds for Blockwise Algorithms

We now present error bounds for the process of one update or downdate using the

procedures in Sections 6.3.2 and 6.3.3. All of the matrices below are computed except

those with S in front of them.

The following two propositions are proven in the Appendix of [14].

PROPOSITION 6.2. Algorithm 6.1 produces an updated matrix B such that for some or-

thogonal matrix D, and V we have

UJ

J\ I

B
V =

\

KB + 8B + 6BQ)

where

SB = d\<ig(6Bv6B2)

6S0 = ^ke/k + ***+! Vt+1 + *7*+ieJb+ier+i

ll^ll^/i/^nJIIBjII + CJC/i2)

||Ö2|| < /x/2(n) ||*2|| + 0{n2) = fxf2(n) a^B) + Oij?)

|^7,|<M/,(n)|7.| + ö(/x2), j = k,k+l
3 o j

where f.(n) = 0(n), i = 1,2, and f.(n) = 0(n), i = 3,4.
I *

127

From [11, 35] this relative change in the entries of the bidiagonal matrix makes

only relative changes in the singular values. Thus this update procedure is very stable.

PROPOSITION 6.3. Algorithm 6.2 produces a downdated matrix B such that for some

orthogonal matrices U and V we have

(

ÜJ
B + SB

0

\
V =

(T-\ (z + 6zyv x

\
B

where

6B = &a&(6Bv8B2)

||^|<M/5(«)P?J + <V)

||M?2I| < M/6(n) p2|| + 0(M2) = M/6(») °k+1W + 0{,?)

||*z(l:fc)||</i/7(n)||z(l:fc)|| + 0(^2)

||^(fc + l:p)|| < fifJn) \\z(k + l:p)|| + ö{ß
2)

where f.(n) = 0(n), i = 5,6, and f.(n) = 0(n), i = 7,8.
z *

These results are as good as can be expected for any such procedure. As we

state in the next section, we can expect sharp separation between singular subspaces

associated with large and small singular values.

6.4.2 Perturbation Bounds for Invariant Subspaces

We consider in this section the effects of the bounds in Propositions 6.2 and 6.3

in the error in certain invariant subspaces of B resulting from Algorithms 6.1 and 6.2.

Two perturbation results show that we expect that the subspaces for large and small

singular values will be very accurately computed.

128

The componentwise backward error SB in Proposition 6.2 has a very small effect

on the < 3rror in the subspaces. The following result is given for completeness.

PROPOSITION 6.4 ([39, LEMMA 4.5]). Let

■ B = bidiag(i1,..., 7n; ^,..., ^j) (6.25)

and let

lshidil«(Vi Vn'vA vA-i)- (6.26)

Let
2n-l

n= JJ max{a ,a } - 1.
i=l

Let w , ...,w be the right singular vectors of B and letw,...,w be the right singular

vectors of B. Let a ,.. .,a be the singular values of B and define

p. = mm|2,rnm ^ j , ■, = 1,2,.. .,n.

Let Z.
i

= (w ,...,w. ,w. ,...,w), that is, the right singular vector matrix of B

with its i-th column deleted. If p. > n, then

wzTw.\\<^(^1+r>Kv-). 1 l \ Pt-V 2)
(6.27)

Thus the effect of the relative errors SB on the updated matrix B is minimal

and has little effect on the singular subspaces.

Proposition 6.3 implies that

129

\\6B2\\<SBe + 0(f?)

|Ml:*)||<*J|*(l:*)|| + 0(*O

\Mk + l:p)\\<6z\\z{k+l:p)\\ + 0(p2).

(6.28)

(6.29)

(6.30)

(6.31)

Here, SD < /D(n)/z and 6 < f (n)fi where fn(n) = 0(n) and / (n) = 0(n).
D ü Z Z D Z

PROPOSITION 6.5. Let B and B + SB be diagonal matrices such that

B =

k n—k

Bl Vleiel
0 A.

SB =
n—k

k n-k

0 SB„

k

n—k

where

l^jH < tfgpj + 0{n\ \\6B2\\ < 6Be+0(n2), Vl6l

V B2 }

< e.

,nxn
Let a > ■ ■ ■ > a, > e > a. > ■•■ > a . Let W, W G 71 be the matrices of right

1 ~ ~ k k+l ~ ~ n

singular vectors of B and B + SB, respectively. If

w = (w1 w2\ w = (wl w2), (6.32)

130

where W W g llnxk, and W W £ ftnx(" k\ then

i<v2iif< 2^1^11 \\B-\\k;^a
2€

k k+1
+ 0(\\SBf). (6.33)

Proof. Let w., i = 1,2,...,/: be the t-th right singular vector of B + SB and let

w., j = k + 1,..., n be the j-th singular vector of B. Then from standard perturbation

-T -
bounds on the eigenvectors of B B we have

|Ä.| = -i j j =L + 0(||Ö||2) 2 2
<T. — a.

t j

(6.34)

8Bw.\\a. + \\6Bw.\\(T.
< » 3 3 » fii.2s

2 2
o\ — a.

i 3

+ 0(\\6B\n (6.35)

We now bound ||^5w.|| for i = 1,2,...,n. First, let

w. =
2

tu. '
I

(2)
\Wi /

k

n—k
(6.36)

Then we have

V 0 B2) { „« J
= C7.

2 (2)
— a .y.

where y. is the corresponding left singular vector. Thus we have

(1) D-l, (1) 7 (2)x

•

131

Therefore,

IKa)H = \\B-1\\(tri + \^k+1\) < \\B-l\\(cr. + e). (6.37)

Now we can say that

\\6Bwf <\\6BlWM\\2 + \\6B2wf\\2

which leads to

\\SSiv.\\<SB\\B1\\\\B^1\\(a. + €)2 + Sy. (6.38)

Equation (6.38) leads to

\\SBw.\\ <SB(a. + y/2 6)11^11 p"1«. (6.39)

Combining (6.35) and (6.39) yields

1 V",-l * W HBi I'— i—2 ~ + °(ll**ll) ^ a. - a.
« J

which is bounded by

T 1 (<T. + s/2 e) _ o
l^^.l^^ll^lip/ii-^——+ 0(||^||2). (6.40)

i j

Thus for all i = 1,2,..., fc and j = k + 1,..., n, we have

|i5V|<* p || ||B 1H—^— + 0(||^||2). (6.41)
k Jfe+1

132

which is now independent of i and j. The use of the Frobenius norm on W = (w ,. ..,w,)

and W2 = (wk+v...,wn) yields (6.33). D

Proposition 6.5 implies that the updating algorithm will always yield accurate

subspaces for the first k and last n-k singular values. For Algorithm 6.2 we must also

bound the effect of hz which is qualitatively slightly different.

-T -
PROPOSITION 6.6. Let B and W be an in Proposition 6.5 and let it satisfy B B =

VBTBVT - zzT where V € TZnXn is the orthogonal matrix from Algorithm 6.2. Let B

satisfy if B = VBTBVT - (z + Sz)(z + 6z)T and let 6z have the form (6.30)-(6.31).

Let z = (xT yT)T, xeTlk,ye Tln~k and assume that \\y\\ < e. Let W e TlnXn be the

matrix of right singular vectors of B and define W^ and W^ from (6.32). Then

WlW2\\F < Szy/k{^k).uR\\B1\\\\B1
1\\x

To r.
ak CTfc+i ^-Vi

where

H-T_» B_„D„„5-li

+ 0(\\6z\\2) (6.42)

w = ||* *ll, »=11^11115/11 (6.43)

Proof. Let w., i = 1,2,..., k be the i-th right singular vector of B + SB and let

w j = k + 1 .. .,n be the j'-th singular vector of B. Then from standard perturbation
3

-T -
bounds on the eigenvectors of B B we have

m \w.6zz w. + w.z6z w.1 _
|^.| = !_J 3—1 L + 0(\\6z\\2) (6.44)

i 2 2 a. - a.
* 3

'

133

\8z w.\ \z w.\-\-\8z w .\\z w.\
< l k 2"^ L + 0(\\Sz\\2). (6.45)

a. — a.
* J

If we use the partitioning of w. in (6.36), then we have

l/io.l = l/w^l + \yTw{2)\ = \xTB-lB.w{l)\ + \yTwi2)\

which means that

\zTw.\ < \\B Tx\\ \\Bv)M\\ + e<ua. + e, t=l,...,n. (6.46)

We also have that

\6zTw.\ < \6xTw^\ + |*yT
W|(2)| < Sg\\x\\ \\v,W\\ + \\y\\ \\w\\

Using the facts that ||a;|| < \\B.1| and ||y|| < e and from (6.37), we have

ifoVi<*,(iiBiini5r1ii,T.-+£)+£

which we simplify to

|^
T
10.|<^||B1||P1

1
||(CT. + 26). (6.47)

Combining (6.45) with (6.46) and (6.47) yields

(a +2e)(a +e) + (a +2e)(a +e)
T.1 ... I ^ £ . . II D II II D—1 II I I J. t \w*w\ < 6u,\\B\\\\B *\\ 2 2

» J

,2 + 0(\\Sz\n (6.48)

134

< «wllfljIIIIUj
a.+ 36
_J
(7. — 0\

+ Ac
2 2

a. — a.
i J

+ o(iiMh- (6.49)

We note that this for i = 1,2,...,/: and j = k + 1,..., n, thus we can bound (6.49) by

IwTwAKSuWB^WB^W
ak ~ ak+\

+ 4e
2 2 +o(iifoir). (6.50)

The bound (6.42) is obtained by computing the Frobenius norm of W W , where W =

(wv...,wk)*adW2 = (wk+v,..,wn). D

6.5 Numerical Examples

In this section, we present a few examples from numerical experiments. These

tests were performed using MATLAB on a SPARCstation 5 in IEEE Standard double

precision with machine precision «10 .As in Chapter 4 the algorithm employs the

sliding window technique from signal processing.

At each step of the sliding window method with the window size m , an m X n

data matrix is constructed from an m x n observation matrix A by adding a new row to

the data matrix in the previous window and deleting the oldest row from it. In step j,

the row m„ + j of the observation matrix
0

Then Algorithms 6.1 and 6.2 take the diagonal matrix and the orthogonal matrix

(right part) as initial input and the modifying vector r, and successively modifies these

matrices at every window step. The vector z = V r is computed at the beginning of

each window step.

I

135

The one-sided Jacobi method [36] was used to compute the SVD of the initial

window matrix A^ , which consists of the first m rows of A, and to compare with our

algorithms for rank estimation and the accuracy of the subspaces.

We tested our algorithms in the context of the total least squares (TLS) problems.

See Section 2.7 for details. We used the TLS solutions via the Jacobi SVD as reference

in checking the accuracy of the solution and rank estimations of our algorithms.

In Fig. 6.5-6.7, the rank estimated by our algorithms (solid line) and the true

rank (dotted line but not visible in the plot) are given in the first plot. The horizontal

axis represents the window steps and the vertical axis the numerical rank of the window

matrix.

Let W^3' and V^' be the right singular vector matrices computed by the Jacobi

method and Algorithms 6.1 and 6.2, respectively. Then, using the Definition 2.3,

0 = ||wf)\p\ j = l,2,.

where W® = (W^ W^) and V^ = (V® V®). We plot log (sin(0.)) in the

second plot of each figure.

Finally, the TLS errors

r = — —
i ll^-ll

are given in logarithm in the last plot. Here, x . and x. are the TLS solutions using the

Jacobi method and our algorithms, respectively.

EXAMPLE 6.4. A, a 100-by-5 random matrix, b, a 100-by-l random vector. Entries of A

and b were chosen from a uniform distribution on the interval (0,1). 75 randomly chosen

rows of [A; b] were multiplied by 7 = 10~ in order to vary the rank of the matrix, and

tol = 10 . The window size p used was 10.

136

The first plot shows that our algorithms estimated the numerical ranks correctly

throughout the sliding window steps in spite of frequent rank changes. The errors in tiny

singular values were relatively large, and our algorithms almost always overestimated

small singular values. However, they were close enough for the correct rank estimation.

The second plot in each figure shows that the noise subspace error is very small

giving accurate TLS solutions.

—9 —7
EXAMPLE 6.5. Same as Example 6.4 except that 7 = 10 and tol = 10

5
EXAMPLE 6.6. Same as Example 6.4 except that the matrix had an outlier of size 10

at (15,1) position.

Both TLS solution errors and the noise subspace errors show that our algorithms

give very accurate approximation to the subspaces under consideration. Moreover, the

algorithm performs well even when some of tiny singular values become almost zero

(indicated by '*' in the first plot). We tested several other examples, and these results

were typical.

Since our downdating procedures use LINPACK downdating algorithm, it is not

difficult to generate the cases where the algorithm breaks down when ||a|| > 1, for

instance, when deleting a large row relative to 7 (see Fig. 6.6) or a row that contains

outliers (see Fig. 6.7). We used the CSNE approach in (6.14)-(6.17), and indicated these

steps by '+' in the first plot.

The CSNE approach was used in all three examples and most extensively in

Example 6.6 when downdating a row with an outlier. However, the performance of our

algorithm was less satisfactory for the larger outlier.

I

137

Rank Estimates
-i r

0 10 20 30 40 50 60 70 80 90

Noise Space Errors
i n r

10 20 30 40 50 60 70 80 90

TLS Solution Errors
"i r

0 10 20 30 40 50 60 70 80 90

Fig. 6.5. Example 6.4

138

Rank Estimates

0 10 20 30 40 50 60 70 80 90

Noise Space Errors
T

20 30 40 50 60 70 80 90

TLS Solution Errors

0 10 20 30 40 50 60 70 80 90

Fig. 6.6. Example 6.5

139

Rank Estimates

0 10 20 30 40 50 60 70 80 90

Noise Space Errors

10 20 30 40 50 60 70 80 90

TLS Solution Errors

0 10 20 30 40 50 60 70 80 90

Fig. 6.7. Example 6.6

140

Chapter 7

Parallel Implementation

7.1 Introduction

In this chapter we describe a fully parallel bidiagonal reduction procedure for

modifying the SVD. In Chapter 6 we showed that blockwise algorithms produced more

accurate subspaces than the ordinary one-way chasing algorithms which ignore the block

structure of the diagonal matrix. A VLSI implementation of the similar chasing schemes

for the bidiagonal reduction for updating was also described in [1, 117], but without

considering the large and small structure of the matrix. In this section we implement

our algorithm on a distributed-memory MIMD multiprocessor. Two storage schemes are

considered: cyclic storage scheme and consecutive storage scheme. We will show that the

consecutive storage scheme implements the bidiagonal reduction much more efficiently.

The main idea behind the Algorithms 6.1 and 6.2 is to reduce the entries of the

vectors x and y in opposite order and to chase the bulge in opposite direction, upper-left

corner for the large block and lower-right corner for the small block. This is based on

the two-way chasing scheme [125], which was also used in [116] with k = n/2 in the

context of updating. The algorithm simply reduces the large and small blocks to almost

bidiagonal form (see the 12-th matrix in Fig. 6.2) by ordinary chasing scheme, and uses

2x2 updating and downdating algorithms to eliminate x, and y , followed by one step

of the qd procedure on the small block to reduce it to the upper bidiagonal matrix. The

141

entire reduction steps for Algorithm 6.1 requires

Step 1 Step 3

k(k - 1) + (n - k)(n - k - 1) + (n - k - 1)

= n - 2nk + 2k2 - (k + 1) (7.1)

plane rotations.

The algorithm allows simultaneous bidiagonal reductions on both large and small

blocks, B. and B (Step 1 in Algorithm 6.1) since they do not share any data throughout

the reduction steps. Following similar notations used in [1], we denote F. . as Givens

plane rotations operating on rows i and j (left rotations), and G. . as those operating

on columns i and j (right rotations). Then from the dependency graph of this algorithm

depicted in Fig. 7.1, we see that G and G , the first rotations for each block, can

be executed in parallel, and the sequence of the rotations that follows are also carried

out in parallel. Hence, the whole reduction only takes

k-3

2 + 3 + --- + 3+2(fc - 1) = 5/b - 9 if k > [^-\ (7.2)

k-3
5n+l 2 + 3+--- + 3+2(n-Jfc-l)+l = 5n-5fc-8 if k < L^nJ (7.3)

time steps. Obviously, the algorithm achieves an optimal performance when k « n/2.

7.2 Overview of Connection Machine

A Connection Machine (CM-5) system can have up to 16K physical processors

or processing nodes (PNs). The CM-5 has two interprocessor communications networks:

data network and control network. The control network is used for global operations

142

T
I
M
E

OTMBFJt OF NODES —»

G G
1,2 n-l,n

F F
1,2 n-l,n

G G
2,3 n-2,n-l

F F
2,3 n-2,n-l

F F
1,2 n-l,n

G G G G
3,4 1,2 n-l,n n—3,n—2

F F
3,4 n—3,n—2

F F
2,3 n-2,n-l

G G G G
4,5 2,3 n—2,n—1 n—4,n—3

F F F F
4,5 1,2 n—l,n n—4,n—3

F G G F
3,4 1,2 n—ltn n—3,n—2

G G
3,4 n—3,n—2

F F
2,3 n-2,n-l

G G
2,3 n—2,n—1

F F
1,2 n—l,n

G G
1,2 n—l,n

G G
k-1 ,* fc+l,fc+2

F F
k-1 k k+l,fc+2

F
fc+2,fc+3

F
1,2

G F
1.2 n—1 ,n

G
n—l,n

F
n-l,n

Fig. 7.1. Dependency Graph of the Modified Bidiagonal Reduction

143

such as synchronization and broadcasting. The data network, which uses, so-called, 4-

ary fat tree [72], supports operations for data transfers from a single source to a single

destination.

The CM-5 supports both SIMD (Single Instruction Multiple Data) and MIMD

(Multiple Instruction Multiple Data) programming models [66]. In the SIMD model, the

data parallel programming associates one PN with each element of a data set. All PNs

execute identical operations, each operating on data stored in its local memory, accessing

data stored in the local memory of other PNs, or receiving data from the host computer.

In the MIMD programming model, each node has its own copy of the same pro-

gram called node program, and executes the program asynchronously. The communi-

cation between the nodes is usually done by utilizing a set of efficient communication

routines contained in the CM message-passing library, CMMD. For our implementation

we chose the MIMD model because the rotations at each time step are different in terms

of their types (left or right) and the data required.

In CM-5 a packet of size 20 bytes is used for nodal communications. First four

bytes are used for control purposes and the rest of 16 bytes contain the data. If a

packet is full, that is, if it contains 16 bytes of user data, the overhead of processing it is

smaller than the message of different sizes. Therefore, the communication overhead will

be smaller if a user made the message size a multiple of 16 bytes [90].

Moreover, a cluster is composed of four processing nodes, and the nodes with the

same cluster share a common switching node capable of four times the bandwidth of the

node at the leaf level. A Similar statement is true for the nodes as progressing toward

the root. Each node must go through at least one switching node to communicate with

the other node. To communicate with the node in a different cluster, the communication

path will be longer. Hence, it takes longer to transfer the data to the node within the

same cluster than to the node outside the cluster.

144

We assume the CM-5 consists of p processing nodes, and denote them as NODE(O),

..., NODE(p-l). Here, we assume that p is a power of two. We choose one of the CMMD

programming styles, Host/Node model, where the host processor allocates the data to the

nodes, and collects the results for the analysis. The host program calls the node program

residing in each node for the various tasks, and each node has identical node program.

Once the node program is loaded in each node, it can be executed asynchronously. Both

host and node programs for our implementation are written in FORTRAN.

7.3 Implementation Details

In this section we give a detailed description of parallel implementation of the

Algorithm 6.1. First, we need the following definition.

DEFINITION 7.1. A pair of left rotations F. . and F. or right rotations G. .

and G. . , is said to be adjacent if\i — j\ = 2.
J.J+1

We also use LRED(Z) to denote the sequence of plane rotations for eliminating x.

and restoring the resulting matrix into the upper bidiagonal matrix (large block), and

SRED(Z) to denote those for eliminating y , . and restoring the matrix into the

lower bidiagonal form (small block), that is,

LRED(0 = {G..+1,F..+1,...,Flj2,G12}, i=l,.. .,*-! (7.4)

SaBD(0 = {GrB_.B_.+1,F_.B_.+1,...,FB_1>BlG|i_liB}, (7.5)

i — 1,.. .,n — k - 1.

From the dependency graph shown in Fig. 7.1, we note that LRED(I) and SRED(i) will

always start and complete at the same time step although SRED(TI - k - 1), the last

sequence for the small block, will finish before LRED(A; - 1) when k > n/2. In this case

145

the qd step of F, k+V^k+1 fc+4'-'"' ^ -1 can Procee(^ while the large block is being

reduced.

There are at least two storage schemes that can be used for implementing the

bidiagonal reduction: cyclic storage scheme and consecutive storage scheme.

7.3.1 Basic Procedures

In Table 7.1 we describe communication primitives for the node-to-node commu-

nications.

Table 7.1. Communication Primitives

Primitives Description CMMD Routines

send(nodelist;out list) Send variables in outlist to
each node in nodelist

CMMD_send_block

recv(i;inlist) Receive variables in inlist from
NODE(i)

CMMD_receive_block

swap (i;inlist;outlist) Exchange variables in outlist
with inlist of NODE(Z)

CMMD_swap

send_and_recv Send variables in outlist to CMMD_send_and_receive
(i,j;inlist;outlist) NODE(J') and receive vari-

ables in inlist from NoDE(i)
simultaneously

Note that all of CMMD communication routines used are blocking version, that

is, each node waits until it finish sending or receiving the data without proceeding to the

next executable code. This ensures that each node carries out the rotation with correct

data as we will see in the next section.

146

7.3.2 Cyclic Storage Scheme

Suppose we store the data rowwise, so that NODE(Z) contains all of nonzero entries

on the row i such as the diagonal entry, and the nonzero entries created by the chasing

steps. Then we immediately observe that this scheme would not give a full parallelism

among the nodes. For instance, at time Step 6 in Fig. 7.1 (sixth matrix in Fig. 6.2),

G and G cannot be executed in fully parallel fashion because NODE(2) has all
1,2 3,4

three elements in the second row, but (2,3) entry is also used in processing G , so that

NODE(2) has to communicate with both NODE(1) and NODE(3). In fact, any adjacent

pair of right rotations would cause similar difficulties when storing the data rowwise.

However, this problem can be completely avoided by storing the data columnwise.

We show this using the following proposition.

PROPOSITION 7.1. Suppose n is even. Then if k / n/2, the dependency graph for

Algorithm 6.1 shown in Fig. 7.1 can contain no adjacent pair of left rotations at any

time step.

Proof. We only consider the reduction steps for large block since the same ar-

gument applies to the small block. Let G. . n and G. . . 0 be the first rotations in

LRED(Z) and LRED(i+l), respectively. Then, we see that G. . _ of LRED(Z + 1)

is executed after completing the rotations G. . ,,F. -,,,F. . . of LRED(i), i.e., when

G. .of LRED(t) is executed. So, their indices differ by two. Since the reduction pat-
i—l,i

terns proceeds as GFFGFG • • • FG, and the indices for the rotations decrease by one

for every pair of F and G, the indices of subsequent rotations LRED(I) and the ones in

LRED(i + 1) differ by at least two. Therefore, it is impossible to have F. . in LRED(Z)

and F. . in LRED(Z + 1), where |/-j| = 2 at the same step. For LRED(I) and LRED(J'),

where \i — j\ > 2, the result is more obvious. D

147

If n is odd, we have the same result regardless of the value of k. In fact, if n

is even and k - n/2, it is possible to have two adjacent left rotations, namely, F,
k—l,k

and F, , in the same time step. But, the reduction step in this case will have the

following form:

/•.

\ /

However, since there is no data dependency among the nodes, they can be executed in

parallel. Therefore, NODE(J) stores all of nonzero entries of j'-th column including the

entries of x and y, that is, we partition the set of nodes {0,1,.. .,p — 1} into

^ = {0,1,...,^-!}, Ps = {po,po+l,...,p-l} (7.6)

where p q < k < (p + l)q. Here, q = n/p.

NODE(J'), j € P' stores columns / < k where

j + l = l (mod po)

NODE(J), j 6 P , stores columns k < I < n where

J-P0+l = (l-k) (mod po)

148

EXAMPLE 7.1. Suppose p = 8, n = 16, k = 11. Then q = 2, P = {0,1,2,3,4} and

P ={5,6,7}.

j 0 1 2 3 4 5 6 7

columns 1,6,11 2,7 3,8 4,9 5,10 12,15 13,16 14

7.3.2.1 Chasing Patterns

Before we consider designing the code for the reduction steps, we need to catego-

rize possible chasing patterns. All of the reduction steps for the large block in Fig. 6.2

fall in one of the chasing patterns described in Fig. 7.2.

',=

I
(a

b
0

\x

i
0\
0
6
x)

a
r 6

(I
d

d\
a
b
xj

I :
3

/ :
4

I 1
lb 0\ lb d\

0 b
0 a =>

a b
d a

\y y) \y o/

b d
a b (ii)

s :
3

S4:

Fig. 7.2. Chasing Patterns

The patterns I -I correspond to the large block, and 5 -s to the small block.

Note that patterns /. is symmetric to s, simply because the types of resulting bidiagonal

149

matrices and the chasing direction for each block are exactly opposite. Here, 6's represent

the diagonal entries, a's super or subdiagonal, and d's bulges. Then, we see that LRED(i)

and SRED(J) have chasing patterns, respectively,

2(«-l) 2(t-l)

{I ,1 A A A A ,...,/ ,/) and {s ,s ,s ,s ,s ,s ,...,s ,s }. X l' 2' 3' 4' 3' 4' ' 3' 4J l 1 2' 3' 4' 3' 4' ' 3' 4J

Note that G has I for LRED(1) with a undefined and / for LRED(Z), i > 1. Similarly,

G has 5 for SRED(1) with a undefined and s for SRED(i), i > 1.
n-l,n 1 v ' 4 v n

7.3.2.2 Host Program

The host program distributes the data among the nodes, coordinates the order of

the reductions, and initiates the reduction process. The CMMD routine CMMD_distrib_

tojiodes provides efficient ways of allocating a. and z. into the local variables b and z

of NODE(Z).

Except for the LRED(1) and SRED(1), the host program initiates the subsequent

reductions at every three time steps, i.e., LRED(t) SRED(TI — i + 2) begin at time step

3 * (i — 1). This can be done by sending a signal to NoDE(i) and NoDE(n — i) as soon

as receiving the message from NoDE(i — 2) which just finished processing the rotation

F. . .
i-2,t-l

Upon the completion of Step 1 of Algorithm 6.1 by the nodes, the host program

calls the subroutines which will perform 2x2 updating or downdating and one step of

the qd process to complete the bidiagonal reduction. This step of the qd process is

completely serial unless k > n/2. If it is the case, NODE(£ + 1), ..., and NoDE(n) can

carry out the qd step while the reduction on the large block is performed.

150

7.3.2.3 Node Program

The CM-5 allows a single node program for all the nodes. However, we need to

design the code so that a single program can handle multiple chasing patterns at the

same time. Moreover, each chasing pattern needs the data from two or three nodes, and

these nodes must know in advance what types of operations to perform. For instance,

all patterns except for I and s require two nodes to do the job, but I and s need three
3 3 3 o

columns, and so require three nodes to get involved in the computation. To this end,

each node keeps a local variable op which is continually modified at every time step.

The value of op of NoDE(t) is determined by NoDE(i + 1) for reducing the large block

and by NoDE(i — 1) for reducing the small block as we will see shortly.

The node programs for the corresponding patterns are given in Table 7.2. A

unique value of op is assigned to each segment of the node program. The value of

op determines which operation each node should perform at a given time step, and each

node executes only the part of the code marked by its current value of op .

The host program 'wakes up' the NODE(I) and NoDE(n — i) always with op =

1 and op = 11, respectively, to start LRED(i) and SRED(Z) because they begin with

eliminating x. and y . . For instance, let us consider LRED(3) = {G , F , F' ,
i n—K—1+1 3,4 3,4 2,3

G , F , G }, which has chasing patterns {/,/,/,/,/,/}. Then, NODE(3) receives
2,3 1,2 1,2 1x34*54

the value of op = 1, and it immediately signals NODE(4) with op = 5 to carry out the

pattern / . Upon the completion of / , NODE(3) and NODE(4) increment their values of

op by one to continue on to the next pattern / . At this point it is not necessary for

NODE(3) to signal NODE(4) to specify the types of operations. When I is completed,

NODE(3) again increments its value op by one and signals NODE(2) with the updated

value of op to start the rotation F with pattern / . Then, NODE(2) signals NODE(3)

with op = 7 and NODE(4) with op = 9, and all three nodes execute parts of the code

151

Table 7.2. Node Programs Using the Cyclic Storage Scheme

Pattern NoDE(i) NODE(i + 1) NoDE(i + 2)

'i

/* op = 1 */
swap(i+ l;a,b,x;b, x)
formrot(x, x,c,s)

a *— c* a
b *— c* 6
d < s * b

/* op = 5 */
swap(i;6, x;ä, 6, x)
foTva.rot(x,x,c,s)

d * s * a
a <— s*b
b <— c*b

'2

1* op = 2 V
formrot(6,d, c, s)
send(i + l;c,s)

1* op = 6 */

recv(i; c, s)
applyrot(a, 6, c, s, 1)

/
3

/* op = 3 V

recv(i + 2;c,s)
6 *— c* b
d*—.s*b

/* op = 7 */

recv(i + 2; c, s)
applyrot(6, a, c, s, 1)

/* op = 9 */
formrot(a, d, c,
send(t, t + l;c,

/
4

/* op = 4 */
swap(i + 1; a, 6, d; ä, 6)
formrot(6, d, c, s)
a <— c * a
applyrot(ä, 6, c, s, 1)

/* op = 8 */
swap(i; a, b; ä, b, d)
formrot(6, d, c, s)

d <— s *a
applyrot(a, 6, c, s, 1)

Sl

/* op = 11 */
swap(i'+l;6,t/;ä,6,2/)
formrot(j/, y, c, s)

b *— c*b
a <— s*b
d *— s * ä

/* op = 15 */
swap(i; a, b, y\ I, y)
formrot(y, y, c, s)

d < s * b
b <— c* b
a <— c* a

S2

/* op = 12 V

recv(i+ l;c, s)
applyrot(a, 6, c, s, 1)

/* op = 16 */
formrot(6, d, c, s)
send(i; c, s)

S
3

/* op = 13 */
formrot(a, d, c, s)

send(j + 1, i + 2; c, s)

1* op = 17 */

recv(i; c, s)
applyrot(6, a, c, s, 1)

/* op = 19 */

recv(i; c, s)
d <— s* b

S4

/* op = 14 */
swap(t + 1; a, b; 5,6, d)
formrot(6, d, c, s)

applyrot(a, 6, c, s, 1)
d <— s * a

/* op = 18 */
swap(i;a,6,(i;ä, b)
formrot(6, d, c, s)

applyrot(5, b, c, s, 1)
a *— c* a

152

according to the value of op . When this step is finished, NODE(2) signals the host node

to start LRED(4), and it moves on to the next pattern / which can be done exactly the

same way. Similarly, we process the repeated patterns / and / in the same fashion.

The node program for the cyclic storage scheme is described in the Appendix.

7.3.3 Consecutive Storage Scheme

In this scheme consecutive blocks of the bidiagonal matrix are stored in each node.

We partition the set of nodes exactly the same way as in (7.6) Using MATLAB notation,

NODE(J') stores

jq+l:(j+l)q \ij <pQ-l

(P0-l)?+l:* if J = P0 - 1

n:-l:n-q+l if p <j<p—l

n — (p — p — l)q:—1: k + 1 ifj=p—1

columns of B.

Denote n (j) as the number of columns which the NODE(J') has in its memory.
c

Then, we have

n (j) =q, t = 0,...,p -2,p ,p + l,...,p-2
o * o

n(p-l) =(l-pn)q + k
cv' 0

n(p-l) = {n-k)-(p-p -l)q.
c u

EXAMPLE 7.2. Suppose p = 8, n = 16, k = 11. Then q = 2, P = {0,1,2,3,4} and

P = {5,6,7}. Each node has the following columns:

153

j 0 1 2 3 4 5 6 7

columns 1,2 3,4 5,6 7,8 9,10,11 16,15 14,13 12

n(j)
C

2 2 2 2 3 2 2 1

Note that the last n—k columns are stored in the nodes in P in reverse order. This
s

ordering makes it possible for the nodes in P and P to have identical node programs for

the bidiagonal reductions on the large and small blocks. From Fig. 6.2, we see that the

bidiagonal reductions on these two blocks are exactly opposite, so that the reduction on

the small block can be done by reversing the order of the diagonal entries and y, reducing

the block exactly the same way as the large block, and again reversing the diagonal and

bidiagonal entries when completed. Therefore, we only describe the reduction steps (6.8),

that is, only for the nodes in P.

As in cyclic storage scheme NODE(j) contains variables a[i], b [i], z [i], i=l,...,

n (j) to store, respectively, the subdiagonal or superdiagonal entries, diagonal entries,
c

and z.. As mentioned before, the orders of array elements are reversed.

Following the notation in (7.4), NODE(0) initiates LRED(I), i,...,q— 1, sequen-

tially. Then it needs to communicate with NODE(1) to execute the chasing pattern /

of LRED(<7), reducing the entries of z. The rest of LRED(g) and starting LRED(g + l),

which is the responsibility of NODE(1), are done simultaneously. We repeat this process

until all of the nodes will have finished their portion of the bidiagonal reduction.

Let us call a node which initiates a LRED(Z) for some i at a given time, the master

node. A slave node is the node which once became the master node, but now has task

of chasing bulges as far as it can. Hence, at any time, there can exist only one master

node, say, NODE(J'), for some j < p — 1, and j slave nodes, NODE(0), ..., NODE(J - 1).

The rest of the nodes stay idle. Note that NoDE(p - 1) never becomes a slave node.

A pseudo-code for the node program is given in Fig. 7.3.

154

/* We assume buf contains b[q-l], b[q], a[q], z[q] . */

/* Node(O) is the master */
if myid == 0 then

for i = 1 to numcol-1
reduce(i);

end;
send(myid+l, buf); recv(myid+l, buf); bchase(q, numcol);
for i-q to k-q /* Now it's a slave */

send(myid+l, buf); recv(myid+l, buf); bchase(q, numcol);
end;

/* Node(idhi) is the master */
else if myid == idhi then

recv(myid-l, buf); redxnode(a, b, d, z, buf); send(myid-l, buf);
for i = 1 to numcol-i

reduced); recv(myid-l, buf); chxnode(a, b, d, buf);
send(myid-l, buf);

end;

/* Node(l) Node(idhi-l) */
else

recv(myid-l, buf); redxnode(a, b, d, z, buf);
send(myid-l, buf);
for i = 1 to numcol-1 /* It's now the master */

reduce(i); recv(myid-l, buf); chxnode(a, b, d, buf);
send(myid-l, buf);

end;

/* reduce across the node */
send(myid+l, buf); recv(myid+l, buf); bchase(q, numcol);
for i = (myid+l)*numcol to k-1 /* It's now a slave */

send.and.recv(myid-1, myid+1, bufin, bufout);
chxnode(a, b, d, bufin);
send_and_recv(myid+l, myid-1, bufout, bufin);
bchase(q, numcol);

end;
end;

Fig. 7.3. Node Program for the Consecutive Storage Scheme

155

Here, idhi = pQ - 1 and numcol = n (j). The function reduce(i) performs the

following transformation:

i i

b a
l l

6 a
2 2

b a
t-i i—l

b. 0
t

6.+1

z. z.
i t+1

bl fll

b a
2 2

b. a. , d
t-i «-1

e 6.
t"+i

«+i

followed by bchase(i)

1 I

b a
l l

2 2

6. , ä
t-i t-i

e b.
i+l

i+i

b 5
l l

K a, 2 2

t-1 t-1

6. a

«+i

•+i

redxnode carries out the sequence of pattern I -I -I , and chxnode I -I -I .
^ r 12 3 3 4 3

156

7.3.4 Computation Cost

Let r ,r , and r be, respectively, the time required for one multiplication, one
MAS

addition, and one square root. Then the time required for (6.8) is

T(k) := kT + (k- l)T + (4* - 4)r + £ T Jk -i+1)
9 1=1

(7.7)

where T , T and T (i) are, respectively, the time required for formrot, applyrot, and
g a red

reduce(i). Since

T = lOr + 2r
g MA

(7.8)

Ta =4TM + 2TA (7.9)

TrJj) =(2j-3)T+(2j - 3)T + (4j - 10)rM, (7.10)

the time required for reducing the large block to bidiagonal form is

T(k) = (16k2+34k - 196)r
A r

 + (4k2 + 8k- 38)r (7.11)

Moreover, 2x2 updating or downdating requires

T =\
12T

M
+

T

A
+

T

S
22 |

9r +6r +6r
I M A S

for updating

for downdating
(7.12)

and one step of the qd process needs

T , = (lOn- 10ib-8)rw qd M
+ 2(n-fc-l)r . (7.13)

157

Therefore, total cost required for the Algorithm 6.1 by each node, is, on average,

TB := i{(T(*) + T(n - k) + T^ + T J) (7.14)

Suppose k = n/2. Then

TB =±{(2T(k) + T22 + Tqd)} (7.15)

= -{(32k2 + 78k - 390)rM + (8A;2 + 18* - 75)r + 3Tg} (7.16)

Here we took the average for T .

7.3.5 Communication Cost

For our analysis, we ignore any possible contention problem for simplicity. Let

a and ß be, respectively, the startup time and the data transfer rate, time per byte.
d d

We need at most four real*4 in single precision, so that sending this message of size 16

takes a +4*4/? seconds. Then the data in the packets used in communication would
d d

be of size multiple of 16, which makes the communication the most efficient on CM-5

[90].

7.3.5.1 Cyclic Storage Scheme

From Table 7.2, we see that F and G require communication at every window

step. Hence, from (7.2) and (7.3), the communication cost becomes

T := <
CYC

V A d d> (7.17)

(5TC - 5* - 8)(a + 16/3) if k < n/2

158

seconds, which is impractical on a coarse-grain distributed-memory MIMD multiproces-

sor due to enormous communication overhead. Moreover, very few computations are

carried out by each node (see Table 7.2). Therefore, a fine-grain multiprocessor with

fast communication ability would be required to make this storage scheme practical for

bidiagonal reduction.

7.3.5.2 Consecutive Storage Scheme

Since NODE(O) initiates and terminates the bidiagonal reduction for the large

block, the total communication cost for this scheme is determined by the number of

send and recv calls done by NODE(O). For reducing the first q — 1 columns of B, which

is done by NODE(O), no communication is required. As a slave node NODE(O) needs to

communicate k — q + 1 times with NODE(1) to chase the bulges.

Moreover, when k < n/2, NODE(P) makes extra effort to complete bidiagonal

reduction by applying one step of the qd process which requires one more communication

step. When k > n/2, nodes in P can carry out the qd step while the large block gets

reduced by the nodes in P. Therefore, the total communication cost for this storage

scheme becomes

(k-q + 2)(aJ + 16/?,) if k > n/2

'CON '~
Tnn„--={ d d (7-18)

{(n - k) - q + 1 + (\P | - l)}(a + 16Ö) if k < n/2
s a a

seconds. Here, IP I denotes the number of nodes in P . Note that T becomes worst
's' s CON

when k < n/2 because the reduction on the large block is already completed before the

qd process begins, and hence there is no parallelism among the nodes for this phase of

the algorithm, requiring \P \ — 1 additional communication steps.

159

7.4 Timing Results

We implemented Algorithm 6.1 with both storage schemes on CM-5 that consists

of up to 32 nodes at the Northeast Parallel Architectures Center (NPAC) at Syracuse

University. Each node of the CM-5 is a SPARC chip which runs at 32 MHz and delivers

22 Mips and 5 Mflops. There is a 64 Kb instruction and data cache and a 16 Mb memory

in each node [111]. In each node, there are two vector units; each vector unit is capable

of peak rate 64 Mflops.

We generated an n-by-n random diagonal matrix B of the form (1.2) and a random

n-vector z with k = n/2, where n = 64,128,256,512,1024. We only implemented the

bidiagonal reduction part for modifying the SVD described in Algorithm 6.1. Computing

the SVD of a general full matrix on a distributed-memory multiprocessor is described in

[71], and computing the SVD of the bidiagonal matrix in [33].

The execution time for bidiagonal reduction using the consecutive storage scheme

with different matrix sizes and various set of processing nodes is given in Table 7.3. Here,

we use the following definition for speed-up achieved by our algorithm

~ T{p)

where T{p) is time required to execute the program on p processors. Similarly, we define

the efficiency of a parallel algorithm as

E= T™
pT(p)

We observe a linear speed-up as n increases with p fixed. When n is small, we

cannot expect any speed-up mainly because of high communication cost compared to the

computation cost. For instance, when n = 64, more than 50% of the total cost accounts

160

for the communication regardless of the number of processing nodes (except for the case

p = 4). In fact, when p = 32, most of time were spent in communication. In this case,

since the value of q is only two, each node has so little to do, and therefore the ratio of

the time spent in communication and computation is quite large.

From (7.18) since q = n/p, we see that as p increases, so does T . However, in

general, q is small compared to k. Hence, the difference in the communication cost be-

tween different p is not significant as seen in Table 7.3. In general, as n increases, so does

q, and therefore, the ratio of communication cost and total cost also decreases. However,

when p is small and n is large, significant part of time were spent in communication

(p = 4, n = 512,1024; p = 8, n = 1024), and little speed-up was gained.

Table 7.4 shows the difference in execution time for various k when n = 1024 and

p = 32. Clearly, we achieve an optimal speed-up when k is close to n/2. Note also that

the bidiagonal reduction with k > n/2 is slightly faster than that with k < n/2 mainly

because when A; > n/2, the qd step can be executed in parallel with the last chasing

step for the large block.

We also implemented Algorithms 6.1 and 6.2 using the cyclic storage scheme.

However, it was embarrassingly slow, and no speed-up was gained in any case. As we

have shown in the previous section, this storage scheme becomes totally impractical when

n > p due to high communication overhead caused by severe contention problems.

161

Table 7.3. CPU Time (in sec) for the Bidiagonal Reduction

p n Comp Comm Total % Comm Speedup

64 0.0182 0.0045 0.0227 19.8 3.3
128 0.0746 0.0086 0.0831 10.3 3.5

4 256 0.3032 0.0171 0.3203 5.3 3.6
512 1.5543 0.1314 1.6857 7.8 2.7
1024 5.2692 0.3672 5.6364 6.5 3.3
64 0.0079 0.0078 0.0157 49.7 4.8
128 0.0338 0.0137 0.0475 28.8 6.1

8 256 0.1397 0.0266 0.1665 16.0 6.8
512 0.5697 0.0529 0.6308 8.4 7.2
1024 3.4508 0.3929 3.8326 10.3 4.9
64 0.0045 0.0136 0.0181 75.0 4.2
128 0.0214 0.0235 0.0449 52.3 6.5

16 256 0.0929 0.0417 0.1346 31.0 8.5
512 0.3878 0.0768 0.4645 16.5 9.8
1024 1.2302 0.1363 1.3664 9.9 13.8

64 0.0013 0.0197 0.0210 93.8 3.6
128 0.0089 0.0294 0.0383 76.8 7.6

32 256 0.0429 0.0504 0.0934 54.0 12.3
512 0.1875 0.0903 0.2778 32.5 16.4
1024 0.7824 0.1537 0.9361 16.2 20.1

Table 7.4. CPU Time (in sec) with Various k (n = 1024, p = 32)

k Total Speedup k Total Speedup

64 1.9039 9.9 960 1.8818 9.9
128 1.7741 10.6 896 1.7542 10.7

256 1.5138 12.4 768 1.4999 12.5

512 0.9361 20.1

162

Chapter 8

Conclusion

We have presented efficient algorithms for modifying the TSODs, and shown that

2
the TSOD can be updated and downdated in ö(n) flops in a manner that preserves its

structure. The backward error analysis and perturbation theory show that the proce-

dures satisfy a blockwise stability property. Thus if our interest is in separating the two

subspaces associated with the large and small singular values, we will obtain answers

that are as good as can be expected. The use of this perturbation theory shows that

we achieve more accuracy in the singular values and more orthogonality in the singular

vectors that result from our update procedures. Our numerical tests show some im-

provement in the accuracy of downdated singular values using our algorithm instead of

general chasing.

Our approach to modifying the ULVD is particularly promising. It is simple to

implement for both updating and downdating, and preserves the rank-revealing struc-

ture often without the deflation process to compute the numerical rank of the matrix.

Moreover, one can efficiently track the size of each block of lower triangular part of factor-

ization for an accurate monitoring of the condition of downdating problem. Furthermore,

data independence among the blocks makes the algorithms parallelizable.

We also have given algorithms for rank-one updates and downdates of the SVD

and partially reduced bidiagonal forms. It has also been shown that these algorithms

satisfy a blockwise stability criterion that has not been shown for other algorithms. The

algorithms proposed to allow the user to specify a tolerance between large and small

163

singular values, and the separation between the associated subspaces is preserved by the

algorithm.

Finally, we presented an efficient method for modifying the SVD in parallel to

establish its practical value in real time applications. The algorithm preserves the block

structures, maintaining the efficiency of parallel procedures as well. The consecutive

storage scheme outperforms the cyclic storage scheme in bidiagonal reduction due to

high communication cost of the latter scheme. The experiments show the efficiency in

using the processors was slightly over 60% for the consecutive storage scheme.

Although the entire thesis is devoted to the problem of modifying the TSOD, there

are a number of unresolved issues and problems. We suggest a few in the following:

• The stability of the CSNE approach taken when downdating is not possible is de-

termined only by experimental results. In particular, one needs to know how good

x in (6.17) really is. A rigorous error analysis should be performed by extending

such results as those due to Björck [18].

• Parallelizing the ULVD procedures is much more challenging than the SVD pro-

cedures. Although the reduction on the large and small blocks can be executed

simultaneously, it is difficult to enhance parallelism within the block. As suggested

in [103] for parallelizing the URVD, we may require a fine-grain MIMD architecture

for efficient implementation of systolic arrays.

• A procedure described by Gu and Eisenstat [56] is a promising approach to modify

the singular vector matrix after modifying the SVD. They use an adaptive version

of one-dimensional fast multipole method [29]. However, an efficient parallel imple-

mentation for this acceleration method is not, as yet, available although a parallel

procedure for non-adaptive version has been developed [45]. Together with our

164

parallel bidiagonal reduction procedure described in Chapter 7, and parallel al-

gorithms for computing the SVD of bidiagonal matrices [33, 65, 107], the SVD

algorithm described in Chapter 6 can be implemented fully in parallel.

It would also be interesting to extend algorithms for modifying the ULVD to those

for modifying the ULLVD for two matrices [75] as an approximation to the gen-

eralized SVD [84, 120]. We also need to analyze the stability and complexity of

the algorithms for modifying the ULLVD and derive the error bounds on the sub-

spaces computed by the ULLVD compared with those by the generalized SVD. The

Estimator-Correlator array processor [108, 109] that can implement the estimator

kernel using the ULVD and the inverse noise kernel using the ULLVD would be a

practical application.

165

References

[1] A. Abdallah and Y. Hu. Parallel VLSI computing array implementation for signal

subspace updating algorithm. IEEE Transactions on Acoustics, Speech, and Signal

Processing, ASSP-37:742-748, 1989.

[2] G. Adams, M.F. Griffin, and G.W. Stewart. Direction-of-arrival estimation using

the rank-revealing URV decomposition. In Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, Washington, D.C., 1991.

IEEE.

[3] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer

algorithms. Addison-Wesley, Reading, MA, 1974.

[4] S.T. Alexander, C.-T. Pan, and R.J. Plemmons. Analysis of a RLS hyperbolic

rotations scheme for signal processing. Linear Algebra and Its Applications, 98:3-

40, 1988.

[5] L.P. Ammann. Robust image processing for remote sensing data. In M. Moonen

and B. De Moor, editors, SVD and signal processing III: algorithms, architectures,

and applications, pages 333-340, New York, 1995. Elsevier.

[6] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Green-

baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK

User's Guide. SIAM Publications, Philadelphia, 1992.

[7] H.C. Andrews and C.L. Patterson. Singular value decomposition and digital image

processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-

24:26-53, 1976.

166

[8] J.L. Barlow. Stability analysis of the G-algorithm and a note on its application to

sparse least squares problems. BIT, 25:507-520, 1985.

[9] J.L. Barlow. Error analysis and implementation aspects of deferred conrection for

equality constrained least-squares problems. SI AM Journal on Numerical Analysis,

25:1340-1358, 1988.

[10] J.L. Barlow. Error analysis of update methods for the symmetric eigenvalue prob-

lem. SIAM Journal on Matrix Analysis and Applications, 14:598-618, 1993.

[11] J.L. Barlow and J.W. Demmel. Computing accurate eigensystems of scaled di-

agonally dominant matrices. SIAM Journal on Numerical Analysis, 27:762-791,

1990.

[12] J.L. Barlow and S.L. Handy. The direct solution of weighted and equality con-

strained least squares problems. SIAM Journal on Scientific and Statistical Com-

puting, 9:704-716, 1988.

[13] J.L. Barlow, P.A. Yoon, and H. Zha. An algorithm and a stability theory for

downdating the ULV decomposition. Technical Report CSE-95-10, Department of

Computer Science and Engineering, The Pennsylvania State University, University

Park, PA, April 1995.

[14] J.L. Barlow, H. Zha, and P.A. Yoon. Stable chasing algorithms for modifying

complete and partial singular value decompositions. Technical Report CSE-93-

19, Department of Computer Science and Engineering, The Pennsylvania State

University, University Park, PA, September 1993.

167

[15] W. Barth, R.S. Martin, and J.H. Wilkinson. Calculation of the eigenvalues of a

symmetric tridiagonal matrix by the method of bisection. Numerische Mathematik,

9:386-393,1967.

[16] J.J. Berbrands. On the relationships between SVD, KLT, and PCA. Pattern

Recognition, 14:375-381, 1981.

[17] G. Bienvenue. Eigensystem properties of the sample space correlation matrix. In

Proceedings of ICASSP 83, pages 332-335, 1983.

[18] Ä. Björck. Stability analysis of the method of semi-normal equations for linear

least squares problems. Linear Algebra and Its Applications, 88/89:31-48, 1987.

[19] Ä. Björck. Least squares methods. In P. Ciarlet and J. Lions, editors, Handbook

of Numerical Analysis, New York, 1989. Elsevier.

[20] Ä. Björck, H. Park, and L. Eiden. Accurate downdating of least squares solutions.

Preprint Series 947, Institute for Mathematics and its Applications, University of

Minnesota, Minneapolis, MN, April 1992.

[21] A.W. Bojanczyk, R.P. Brent, P. Van Dooren, and F.R. De Hoog. A note on

downdating the Cholesky factorization. SI AM Journal on Scientific and Statistical

Computing, 8:210-221, 1987.

[22] A.W. Bojanczyk and J.M. Lebak. Downdating a ULLV decomposition of two

matrices. In J.G. Lewis, editor, Proceedings of the Fifth SIAM Conference on

Applied Linear Algebra, pages 261-265, Philadelphia, 1994. SIAM.

[23] N.K. Bose and H.M. Valenzuela. Recursive total least squares algorithm for image

reconstruction from noisy, undersampled frames. Multidimensional Systems and

Signal Processing, 4:253-268, 1993.

168

[24] J.R. Bunch. The weak and strong stability of algorithms in numerical linear alge-

bra. Linear Algebra and Its Applications, 88/89:49-66, 1987.

[25] J.R. Bunch and C.P. Nielsen. Updating the singular value decomposition. Nu-

merische Mathematik, 31:111-129, 1978.

[26] J.R. Bunch, C.P. Nielsen, and D. Sorensen. Rank-one modification of the symmet-

ric eigenproblem. Numerische Mathematik, 31:31-48, 1978.

[27] P.A. Businger. Updating a singular value decomposition. BIT, 10:376-397, 1970.

[28] J.A. Cadzow. Spectral estimation and overdetermined rational model approach.

In Proceedings IEEE, volume 70, pages 907-939. IEEE Computer Society Press,

1982.

[29] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for

particle simulations. Numerische Mathematik, 31:31-48, 1978.

[30] J. Carrier and V. Rokhlin. A fast algorithm for particle simulations. Journal of

Computational Physics, 73:325-348, 1987.

[31] T.F. Chan. Rank-revealing QR factorizations. Linear Algebra and Its Applications,

88/89:67-82, 1987.

[32] J.M. CiofR and T. Kailath. Windowed fast transversal filters, adaptive algorithms

with normalization. IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, ASSP-33:607-625, 1985.

[33] S. Criveli and E.R. Jessup. Optimal eigenvalue computation on distributed-

memory MIMD multiprocessor. Technical Report CU-CS-617-92, Department of

Computer Science, University of Colorado, Boulder, CO, October 1992.

169

[34] C.E. Davila. Efficient recursive total least squares algorithm for FIR adaptive

filtering. IEEE Transactions on Signal Processing, 42:268-280, 1994.

[35] J.W. Demmel and W.H. Kahan. Accurate singular values of bidiagonal matrices.

SIAM Journal on Scientific and Statistical Computing, 11:873-912, 1990.

[36] J.W. Demmel and K. Veselic'. Jacobi's method is more accurate than QR. SIAM

Journal on Matrix Analysis and Applications, 13:1204-1243,1992.

[37] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart. UNPACK User's

Guide. SIAM Publications, Philadelphia, 1979.

[38] J.J. Dongarra and D.C. Sorensen. A fully parallel algorithm for the symmetric

eigenvalue problem. SIAM Journal on Scientific and Statistical Computing, 8:139-

154,1987.

[39] S.C. Eisenstat and I.C.F. Ipsen. Relative perturbation techniques for singular value

problems. Technical Report YALEU/DCS/RR-942, Department of Computer Sci-

ence, Yale University, July 1993.

[40] K.V. Fernando and B.N. Parlett. Accurate singular values and differential QD

algorithms. Technical Report PAM-554, Center for Pure and Applied Mathematics,

University of California, Berkeley, CA, July 1992.

[41] R.D. Fierro. Perturbation analysis for two-sided (or complete) orthogonal decom-

positions. Technical Report 94-02, Department of Mathematics, California State

University, San Marcos, CA, February 1994.

[42] R.D. Fierro and J.R. Bunch. Bounding the subspaces from rank revealing two-sided

orthogonal decompositions. Technical Report 94-05, Department of Mathematics,

California State University, San Marcos, CA, May 1994.

170

[43] R.D. Fierro and P. C. Hansen. Approximating the LS and TLS solutions by rank

revealing two-sided orthogonal decomposition. Technical Report 93-16, Depart-

ment of Mathematics, University of California at Los Angeles, Los Angeles, CA,

1993.

[44] L.V. Foster. Rank and null space calculations using matrix decomposition without

column interchanges. Linear Algebra and Its Applications, 74:47-71, 1986.

[45] F.Zhao and S.L. Johnsson. The parallel multipole method on the Connection

Machine. SIAM Journal on Scientific and Statistical Computing, 12:1420-1437,

1991.

[46] P.E. Gill, G.H. Golub, W. Murray, and M.A. Saunders. Methods for modifying

matrix factorizations. Mathematics of Computation, 28:505-535, 1974.

[47] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of

a matrix. SIAM Journal on Numerical Analysis, 2:205-224,1965.

[48] G. H. Golub and C. Reinsch. Singular value decomposition and least squares

solution. Numerische Mathematik, 14:403-420, 1970.

[49] G.H. Golub. Some modified matrix eigenvalue problems. SIAM Review, 15:318-

344,1973.

[50] G.H. Golub and C.F. Van Loan. Matrix Computations, Second Edition. The Johns

Hopkins Press, Baltimore, MD, 1989.

[51] G.H. Golub and C.F. Van Loan. An analysis of the total least squares problem.

SIAM Journal on Numerical Analysis, 17:883-893,1980.

171

[52] W.B. Gragg and W.J. Harrod. The numerical stable reconstruction of Jacobi

matrices from spectral data. Numerische Mathematik, 44:317-336, 1984.

[53] W.B. Gragg, J.R. Thorton, and D.D. Warner. Parallel divide and conquer algo-

rithms for the symmetric tridiagonal eigenproblem and bidiagonal singular value

problem. Technical report, Department of Mathematics, Naval Postgraduate

School, Monterey, CA, 1992.

[54] M. Gu and S.C. Eisenstat. A stable and efficient algorithm for the rank-one mod-

ification of the symmetric eigenproblem. SIAM Journal on Matrix Analysis and

Applications, 15:1266-1276, 1994.

[55] M. Gu and S.C. Eisenstat. A divide-and-conquer algorithm for the bidiagonal

SVD. SIAM Journal on Matrix Analysis and Applications, 16:79-92, 1995.

[56] M. Gu and S.C. Eisenstat. A divide-and-conquer algorithm for the symmetric

tridiagonal eigenproblem. SIAM Journal on Matrix Analysis and Applications,

16:172-191,1995.

[57] M. Gu and S.C. Eisenstat. Downdating the singular value decomposition. Technical

Report YALEU/DCS/RR-939, Department of Computer Science, Yale University,

New Haven, CT, January 1993.

[58] W. W. Hager. Applied Numerical Linear Algebra. Prentice Hall, Englewood, NJ,

1988.

[59] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[60] T.L. Henderson. Geometric methods for determining system poles from transient

response. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-

29:982-989,1981.

172

[61] N.J. Higham. A survey of condition number estimation for triangular matrices.

SIAM Review, 29:575-598, 1987.

[62] Y.-P. Hong and C.-T. Pan. Rank-revealing QR factorizations and the SVD. Math-

ematics of Computation, 58:213-232, 1992.

[63] R.A. Horn and C.A. Johnson. Matrix Analysis. Cambridge University Press, New

York, NY, 1985.

[64] S. Hosur, A.H. Tewfik, and D. Boley. Generalized ULV subspace tracking LMS

algorithm. In M. Moonen and B. De Moor, editors, SVD and signal processing

III: algorithms, architectures, and applications, pages 295-302, New York, 1995.

Elsevier.

[65] Y. Huo and R. Schreiber. Efficient, massively parallel eigenvalue computation.

Technical report, The Research Institute for Advanced Computer Science, NASA

Ames Research Center, Moffet Field, CA, January 1993.

[66] K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processing.

McGraw-Hill, New York, 1984.

[67] E. R. Jessup and D.C. Sorensen. A parallel algorithm for computing the singular

value decomposition. Technical Report MCS-TM-102, Mathematics and Computer

Science Division, Argonne National Laboratory, Argonne, IL, 1987.

[68] D.H. Johnson. The application of spectral estimation methods to bearing estima-

tion problems. In Proceedings IEEE, volume 70, pages 1018-1028. IEEE Computer

Society Press, 1982.

[69] T. Kato. A Short Introduction to Perturbation Theory for Linear Operators.

Springer-Verlag, New York, 1982.

173

[70] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Prentice-Hall,

Englewood Cliff, NJ, 1974.

[71] T.J. Lee, F.T. Luk, and D.L. Boley. Computing the singular value decomposi-

tion on a fat-tree architecture. Technical Report 92-33, Department of Computer

Science, Rensselaer Polytechnic Institute, Troy, NY, November 1992.

[72] C.E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomput-

ing. IEEE Transactions on Computers, C-24:892-901, 1985.

[73] K.J.R. Liu, D.P. O'Leary, G.W. Stewart, and Y.-J.J. Wu. An adaptive ESPIRIT

based on URV decomposition. In Proceedings of ICASSP 93, pages IV-37-40,

1993.

[74] F.T. Luk and H. Park. On parallel Jacobi ordering. SIAM Journal on Scientific

and Statistical Computing, 10:18-26, 1989.

[75] F.T. Luk and S. Qiao. A new matrix decomposition for signal processing. Techni-

cal Report TR 92-28, Department of Computer Science, Rensselaer Polytechnical

Institute, Troy, NY, October 1992.

[76] M.P. Mahon. An alternative recursive updating scheme for the QR algorithm with

application to adaptive beamforming. Master's thesis, Department of Electrical

Engineering, The Pennsylvania State University, University Park, PA, 1991.

[77] M.P. Mahon, L.H. Sibul, and H.M. Valenzuela. Sliding window update for the

basis matrix of the QR decomposition. IEEE Transactions on Signal Processing,

41:1951-1953,1993.

[78] MathWorks Inc., Natick, MA. MATLAB, High-performance Numeric Computation

and Visualization Software. 1993.

174

[79] M. Moonen, P. Van Dooren, and J. Vandewalle. An SVD updating algorithm for

subspace tracking. SIAM Journal on Matrix Analysis and Applications, 13:1015-

1038,1992.

[80] M. Moonen, P. Van Dooren, and J. Vandewalle. Systolic array for SVD updating.

SIAM Journal on Matrix Analysis and Applications, 14:353-371, 1993.

[81] M. Moonen, P. Van Dooren, and F. Vanpouche. On the QR algorithm and updating

the SVD and URV decomposition in parallel. Preprint, IMA, 1992.

[82] D.P. O'Leary. The SVD and image restoration. In M. Moonen and B. De Moor,

editors, SVD and signal processing HI: algorithms, architectures, and applications,

pages 315-322, New York, 1995. Elsevier.

[83] C.C. Paige. Error analysis of some techniques for updating orthogonal decompo-

sitions. Mathematics of Computation, 34:465-447, 1980.

[84] C.C. Paige and M.A. Saunders. Towards a generalized singular value decomposi-

tion. SIAM Journal on Numerical Analysis, 18:398-405, 1981.

[85] C.-T. Pan. A modification to the LINPACK downdating algorithm. BIT, 30:707-

722, 1990.

[86] C.-T. Pan. A perturbation analysis on the problem of downdating a Cholesky

factorization. Linear Algebra and Its Applications, 183:103-115, 1993.

[87] H. Park and L. Eiden. Downdating the rank-revealing URV decomposition. SIAM

Journal on Matrix Analysis and Applications, 16:138-156, 1995.

[88] B. N. Parlett. The Rayleigh quotient iteration and some generalizations for non-

normal matrices. Mathematics of Computation, 28:679-693, 1974.

175

[89] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs,

NJ, 1980.

[90] R. Ponnusamy, A. Choudhary, and A. Fox. Communication overhead on CM-

5:an experimental performance evaluation. In H.J. Siegel, editor, Proceedings of

the Fourth Symposium on the Frontiers of Massively Parallel Computations, pages

108-115. IEEE Computer Society Press, 1992.

[91] R. Roy and T. Kailath. ESPRIT - estimation of signal parameters via rotational

invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, 37:984-995, 1989.

[92] R. Roy, P. Paulraj, and T. Kailath. ESPRIT - a subspace rotation approach to

estimation of parameter of sinusoids in noise. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 34:1340-1342, 1986.

[93] H. Rutishauser. On Jacobi rotation patterns, pages 219-239. Amer. Math. Soc,

1963.

[94] R.O. Schmidt. A signal subspace approach to multiple emitter location adn spectral

estimation. PhD thesis, Stanford University, Stanford, CA, 1981.

[95] R.O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE

Transactions on Antennas and Propagation, 34:276-280, 1986.

[96] L.H. Sibul. Application of singular value decomposition to adaptive beamforming.

In Proceedings of ICASSP 84, 1984.

[97] D.C. Sorensen and P.T. Tang. On the orthogonality of eigenvectors computed by

the divide-and-conquer techniques. SI AM Journal on Numerical Analysis, 28:1752-

1775,1991.

176

[98] G.W. Stewart. Introduction to Matrix Computation. Academic Press, New York,

1973.

[99] G.W. Stewart. The effects of rounding error on an algorithm for downdating a

Cholesky factorization. Journal of Institute of Mathematics and Its Applications,

23:203-213, 1979.

[100] G.W. Stewart. Two simple residual bounds for the eigenvalues of a Hermitian

matrix. SIAM Journal on Matrix Analysis and Applications, 12:205-209,1991.

[101] G.W. Stewart. An updating algorithm for subspace tracking. IEEE Transactions

on Signal Processing, 40:1535-1541, 1992.

[102] G.W. Stewart. Updating a rank-revealing ULV decomposition. SIAM Journal on

Matrix Analysis and Applications, 14:494-499, 1993.

[103] G.W. Stewart. Updating URV decompositions in parallel. Technical Report CS-

TR 2880, Department of Computer Science, University of Maryland, College Park,

MD, April 1992.

[104] G.W. Stewart. On an algorithm for refining a rank-revealing URV decomposition

and a perturbation theorem for singular values. Technical Report CS-TR 2626,

Department of Computer Science, University of Maryland, College Park, MD,

March 1991.

[105] M. Stewart and P. Van Dooren. An updating algorithm for on-line MIMO system

identification. In M. Moonen and B. De Moor, editors, SVD and signal processing

III: algorithms, architectures, and applications, pages 441-448, New York, 1995.

Elsevier.

[106] G. Strang. Linear Algebra and Its Applications. Academic Press, New York, 1980.

177

[107] P.N. Swartztrauber. A parallel algorithm for computing the eigenvalues of a sym-

metric tridiagonal matrix. Mathematics of Computation, 60:651-668,1993.

[108] J.A. Tague. Estimation-correlation, modeling, and identification in adaptive array

processors. PhD thesis, The Pennsylvania State University, University Park, PA,

1987.

[109] J.A. Tague and L.H. Sibul. Estimator-correlator array processing: theoretical

underpinnings and adaptive implementation. Multidimensional Systems and Signal

Processing, 2:55-68, 1991.

[110] L. Tang. TTLS algorithms based on SVD and ULVD for solving ocean acoustic

tomography. Master's paper, Department of Computer Science and Engineering,

The Pennsylvania State University, University Park, PA, December 1995.

[Ill] Thinking Machines Corporation, Cambridge, MA. Connection Machine CM-5

Technical Summary. 1991.

[112] R.A. Thisted. Elements of Statistical Computing. Chapman and Hall, New York,

1988.

[113] D.W. Tufts and R. Kumaresan. Estimation of frequency of multiple sinusoids:

making linear prediction perform like maximum likelihood. In Proceedings IEEE,

volume 70, pages 975-1017. IEEE Computer Society Press, 1982.

[114] S. Van Huffel. Analysis of the Total Least Squares Problem and its Use in Param-

eter Estimation. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium,

1987.

178

[115] S. Van Huffel and H. Park. Efficient reduction algorithms for bordered band matri-

ces. Technical report, ESAT Laboratory, Katholieke Universiteit Leuven, Leuven,

Belgium, 1992.

[116] S. Van Huffel and H. Park. Parallel reduction of bordered diagonal matrices.

Technical Report 93-018, Army High Performance Computing Research Center,

University of Minnesota, Minneapolis, MN, February 1993.

[117] S. Van Huffel and H. Park. Parallel tri- and bi-diagonalization of bordered bi-

diagonal matrices. Technical Report 93-024, Army High Performance Computing

Research Center, University of Minnesota, Minneapolis, MN, March 1993.

[118] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem: Computational

Aspects and Analysis. SIAM Publications, Philadelphia, 1991.

[119] S. Van Huffel and H. Zha. An efficient total least squares algorithm based on a rank

revealing two-sided orthogonal decomposition. Numerical Algorithms, 4:101-133,

1993.

[120] C.F Van Loan. Generalizing the singular value decomposition. SIAM Journal on

Numerical Analysis, 13:76-83, 1976.

[121] D.S. Watkins. Fundamentals of Matrix Computations. Wiley, New York, 1991.

[122] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,

London,1965.

[123] W. Wold, A. Ruhe, H. Wold, and W.J. Dunn, III. The collinearity in linear

regression, the partial least squares PLS approach to generalized inverses. SIAM

Journal on Scientific and Statistical Computing, 5:735-743, 1984.

179

[124] P.A. Yoon and J.L. Barlow. Modifying the singular value decomposition on the

Connection Machine. In J.G. Lewis, editor, Proceedings of the Seventh SIAM Con-

ference on Parallel Processing for Scientific Computing, pages 261-265, Philadel-

phia, 1995. SIAM.

[125] H. Zha. A two-way chasing scheme for reducing a symmetric arrowhead matrix to

tridiagonal form. Journal of Numerical Linear Algebra with Applications, 1:49-57,

1992.

180

Appendix

Node Program for Bidiagonal Reduction

with Cyclic Storage Scheme

c

c This node program will reduce the arrow-head matrix to

c

c

c

the bidiagonal matrix using cyclic storage scheme

Variables used:

c abdz — contains values of a, b, d, and z in that order

c myid — node id

c idpl — myid + 1

c idp2 — myid + 2

c idml — myid - 1

c idm2 — myid - 2

c hid — host id

c cs — angles for the rotations

c inrngl — processing the large block

c

c

inrng2 — processing the small block

special case — first two rotations in each block

100 continue

again = .true.

50 continue

ret = CMMD_receive_block(src, tag, op, isize)

150 continue
go to (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), op

1

2

op = 1

. . op = 2

3 continue
ret = CMMD_send_block(idpl, tag, 7, isize)

181

ret = CMMD_send_block(idp2, tag, 9, isize)

ret = CMMD_receive_block(idp2, tag, cs, angsiz)

abdz(3) = cs(2)*abdz(2)

abdz(2) = cs(l)*abdz(2)

op = 4

it = it + 1

go to 200

4 continue

ret = CMMD_send_block(idpl, tag, 8, isize)

ret = CMMD_swap(idpl, abdzt, bufsiz, abdz, bufsiz)

call formrot(abdzt(2), abdz(3), cs(l), cs(2))

abdz(l) = cs(l)*abdz(l)

call applyrot(abdzt(1), abdz(2), cs(l), cs(2), 1)

op = 3

it = it + 1

go to 200

5 ... op = 5

6 ... op = 6

7 continue

ret = CMMD_receive_block(idpl, tag, cs, angsiz)

call applyrot(abdz(2), abdz(l), cs(l), cs(2), 1)

it = it + 1

go to 100

8 continue

if (inrngl .and. it .eq. maxit) then

ret = CMMD_send_block(hid, tag, 20, isize)

end if

ret = CMMD_swap(idml, abdzt, bufsiz, abdz, bufsiz)

call formrot(abdz(2), abdzt(3), cs(i), cs(2))

abdz(3) = cs(2)*abdzt(l)

call applyrot(abdz(1), abdzt(2), cs(l), cs(2), 1)

it = it + 1

go to 100

continue

call formrot(abdz(l), abdz(3), cs(l), cs(2))

ret = CMMD_send_block(idm2, tag, cs, angsiz)

ret = CMMD_send_block(idml, tag, cs, angsiz)

it = it + 1

go to 100

182

10 ... terminate

go to 999

200 continue

if (again) then

again = .not. again

go to 150

else

if (myid .ne. 0) then
ret = CMMD_send_block(idml, tag, op, isize)

else

ret = CMMD_send_block(hid, tag, op, isize)

end if

go to 100

end if

999 continue

similarly for the small block

